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Syntactic Analysis

Syntactic analysis, or parsing, is the 
second phase of compilation: The 

token file is converted to an abstract 
syntax tree. 
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Syntactic Analysis / Parsing

• Goal: Convert token stream to abstract syntax tree
• Abstract syntax tree (AST):

– Captures the structural features of the program
– Primary data structure for remainder of analysis

• Three Part Plan
– Study how context-free grammars specify syntax
– Study algorithms for parsing / building ASTs
– Study the miniJava Implementation

Context-free Grammars
• Compromise between

– REs, which can’t nest or specify recursive structure 
– General grammars, too powerful, undecidable 

• Context-free grammars are a sweet spot
– Powerful enough to describe nesting, recursion
– Easy to parse; but also allow restrictions for speed

• Not perfect
– Cannot capture semantics, as in, “variable must be 

declared,” requiring later semantic pass
– Can be ambiguous

• EBNF, Extended Backus Naur Form, is popular 
notation
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CFG Terminology
• Terminals -- alphabet of language defined by CFG
• Nonterminals -- symbols defined in terms of 

terminals and nonterminals
• Productions -- rules for how a nonterminal (lhs) is 

defined in terms of a (possibly empty) sequence of 
terminals and nonterminals
– Recursion is allowed!

• Multiple productions allowed for a nonterminal, 
alternatives

• Start symbol -- root of the defining language

Program ::= Stmt
Stmt ::= if ( Expr ) then Stmt else Stmt
Stmt ::= while ( Expr ) do Stmt

EBNF Syntax of initial MiniJava

Program       ::= MainClassDecl { ClassDecl } 
MainClassDecl ::= class ID {

public static void main
( String [ ] ID ) { { Stmt } }

ClassDecl ::= class ID [ extends ID ] {
{ ClassVarDecl } { MethodDecl } }

ClassVarDecl ::= Type ID ;
MethodDecl ::= public Type ID 

( [ Formal { , Formal } ] )
{ { Stmt } return Expr ; }

Formal        ::= Type ID 
Type          ::= int | boolean | ID
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Initial miniJava [continued]
Stmt ::= Type ID ;

| { {Stmt} }

| if ( Expr ) Stmt else Stmt 
| while ( Expr ) Stmt 
| System.out.println (Expr ) ;
| ID = Expr ;

Expr ::= Expr Op Expr
| ! Expr
| Expr . ID ( [ Expr { , Expr } ] )
| ID | this

| Integer | true | false

| ( Expr )

Op   ::= + | - | * | /
| < | <= | >= | > | == | != | &&

RE Specification of initial MiniJava Lex
Program ::= (Token | Whitespace)* 
Token ::= ID | Integer | ReservedWord | Operator |

Delimiter 
ID ::= Letter (Letter | Digit)* 
Letter ::= a | ... | z | A | ... | Z

Digit ::= 0 | ... | 9

Integer ::= Digit +

ReservedWord::= class | public | static | extends |
void | int | boolean | if | else | 
while| return| true| false| this | new | String

| main | System.out.println
Operator ::= + | - | * | / | < | <= | >= | > | == | 

!= | && | !

Delimiter ::= ; | . | , | = | ( | ) | { | } | [ | ]
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Derivations and Parse Trees

Derivation: a sequence of expansion steps, 
beginning with a start symbol and leading to a 
sequence of terminals

Parsing: inverse of derivation
– Given a sequence of terminals (a\k\a tokens) want 

to recover the nonterminals representing structure

Can represent derivation as a parse tree, that 
is, the concrete syntax tree

Example Grammar

E  ::= E op E | - E | ( E ) | id

op ::= + | - | * | /

a    *    (   b   +    - c   )
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Ambiguity

• Some grammars are ambiguous
– Multiple distinct parse trees for the same terminal 

string

• Structure of the parse tree captures much of 
the meaning of the program
– ambiguity implies multiple possible meanings for 

the same program

Famous Ambiguity: “Dangling Else”
Stmt ::= ... | 

if ( Expr ) Stmt | 

if ( Expr ) Stmt else Stmt 

if ( e1) if ( e2) s1 else s2 : if ( e1) if ( e2) s1 else s2
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Resolving Ambiguity

• Option 1: add a meta-rule 
– For example “else associates with closest 

previous if”
• works, keeps original grammar intact 
• ad hoc and informal 

Resolving Ambiguity [continued]

Option 2: rewrite the grammar to resolve 
ambiguity explicitly 

Stmt          ::= MatchedStmt | UnmatchedStmt 

MatchedStmt   ::= ... | 

if ( Expr ) MatchedStmt else MatchedStmt 

UnmatchedStmt ::= if ( Expr ) Stmt | 

if ( Expr ) MatchedStmt else UnmatchedStmt

– formal, no additional rules beyond syntax 
– sometimes obscures original grammar
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Resolving Ambiguity Example

Stmt          ::= MatchedStmt | UnmatchedStmt   

MatchedStmt   ::= ... | 

if ( Expr ) MatchedStmt else MatchedStmt

UnmatchedStmt ::= if ( Expr ) Stmt | 

if ( Expr ) MatchedStmt else UnmatchedStmt 

if ( e1)   if ( e2)   s1 else   s2

Resolving Ambiguity [continued]

Option 3: redesign the language to remove the 
ambiguity 

Stmt ::= ... | 
if Expr then Stmt end | 
if Expr then Stmt else Stmt end

– formal, clear, elegant 
– allows sequence of Stmts in then and else

branches, no { , } needed 
– extra end required for every if
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Another Famous Example

E  ::= E Op E | - E | ( E ) | id 

Op ::= + | - | * | /

a   +   b   *   c   :   a   +   b   *   c

Resolving Ambiguity (Option 1)
Add some meta-rules, e.g. precedence and 

associativity rules 

Example: 
E ::= E Op E | - E | E ++ 

| ( E ) | id 

Op::=  + | - | * | / | % 

| ** | == | < | && 

| ||

LeftLowest||

Left&&

None==, <

Left+, -

Left*, /, %

Right** (Exp)

RightPrefix -

LeftHighestPostfix ++

AssocPrecedOperator
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Removing Ambiguity (Option 2)

Option2: Modify the grammar to explicitly resolve the 
ambiguity 

Strategy: 
• create a nonterminal for each precedence level 
• expr is lowest precedence nonterminal, 

each nonterminal can be rewritten with higher
precedence operator, highest precedence 
operator includes atomic exprs 

• at each precedence level, use: 
– left recursion for left-associative operators 
– right recursion for right-associative operators 
– no recursion for non-associative operators

Redone Example
E  ::= E0 

E0 ::= E0 || E1 | E1 left associative 

E1 ::= E1 && E2 | E2 left associative 

E2 ::= E3 ( == | <) E3 | E3 non associative 

E3 ::= E3 ( + | -) E4 | E4 left associative 

E4 ::= E4 ( * | / | %) E5 | E5 left associative 

E5 ::= E6 ** E5 | E6 right associative 

E6 ::= - E6 | E7 right associative 

E7 ::= E7 ++ | E8 left associative 

E8 ::= id | ( E )
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Designing A Grammar

Concerns:
– Accuracy
– Unambiguity
– Formality
– Readability, Clarity
– Ability to be parsed by a particular algorithm:

• Top down parser ==> LL(k) Grammar
• Bottom up Parser ==> LR(k) Grammar

– Ability to be implemented using particular approach
• By hand
• By automatic tools

Parsing Algorithms

Given a grammar, want to parse the input 
programs
– Check legality
– Produce AST representing the structure
– Be efficient

• Kinds of parsing algorithms
– Top down
– Bottom up
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Top Down Parsing

Build parse tree from the top (start symbol) down to 
leaves (terminals) 

Basic issue: 
• when "expanding" a nonterminal with some r.h.s., how 

to pick which r.h.s.? 

E.g. 
Stmts  ::= Call | Assign | If | While 
Call   ::= Id ( Expr {,Expr} ) 
Assign ::= Id = Expr ; 
If     ::= if Test then Stmts end 

| if Test then Stmts else Stmts end 

While  ::= while Test do Stmts end

Solution: look at input tokens to help decide

Predictive Parser

Predictive parser: top-down parser that can select rhs 
by looking at most k input tokens (the lookahead) 

Efficient: 
– no backtracking needed 
– linear time to parse 

Implementation of predictive parsers: 
– recursive-descent parser 

• each nonterminal parsed by a procedure 
• call other procedures to parse sub-nonterminals, recursively 
• typically written by hand 

– table-driven parser 
• PDA:like table-driven FSA, plus stack to do recursive FSA calls 
• typically generated by a tool from a grammar specification
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LL(k) Grammars
Can construct predictive parser automatically / easily if 

grammar is LL(k) 
• Left-to-right scan of input, Leftmost derivation 
• k tokens of look ahead needed, ≥ 1 

Some restrictions: 
• no ambiguity (true for any parsing algorithm) 
• no common prefixes of length ≥ k: 

If ::= if Test then Stmts end | 
if Test then Stmts else Stmts end 

• no left recursion: 
E  ::= E Op E | ... 

• a few others
Restrictions guarantee that, given k input tokens, can always 
select correct rhs to expand nonterminal. Easy to do by hand in 
recursive-descent parser

Eliminating common prefixes

Can left factor common prefixes to eliminate them 
– create new nonterminal for different suffixes 
– delay choice till after common prefix 

• Before: 
If ::= if Test then Stmts end | 

if Test then Stmts else Stmts end

• After: 
If     ::= if Test then Stmts IfCont 

IfCont ::= end | else Stmts end
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Eliminating Left Recursion

• Can Rewrite the grammar to eliminate left recursion
• Before

E ::= E + T | T 
T ::= T * F | F 

F ::= id | ...

• After
E    ::= T ECon

ECon ::= + T ECon | ε
T    ::= F TCon

TCon ::= * F TCon | ε
F    ::= id | ...

Bottom Up Parsing

Construct parse tree for input from leaves up 
– reducing a string of tokens to single start symbol 

(inverse of deriving a string of tokens from start 
symbol) 

“Shift-reduce” strategy: 
– read (“shift”) tokens until seen r.h.s. of “correct”

production 
– reduce handle to l.h.s. nonterminal, then continue 
– done when all input read and reduced to start 

nonterminal

A ::=  bc.Dxyza bcde f
^
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LR(k)

• LR(k) parsing
– Left-to-right scan of input, Rightmost derivation 
– k tokens of look ahead 

• Strictly more general than LL(k) 
– Gets to look at whole rhs of production before deciding what 

to do, not just first k tokens of rhs 
– can handle left recursion and common prefixes fine 
– Still as efficient as any top-down or bottom-up parsing 

method 

• Complex to implement 
– need automatic tools to construct parser from grammar 

LR Parsing Tables

Construct parsing tables implementing a FSA with a 
stack
• rows: states of parser
• columns: token(s) of lookahead
• entries: action of parser

• shift, goto state X
• reduce production “X ::= RHS ”
• accept
• error 

Algorithm to construct FSA similar to algorithm to build 
DFA from NFA
• each state represents set of possible places in parsing 

LR(k) algorithm builds huge tables
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LALR-Look Ahead LR

LALR(k) algorithm has fewer states ==> smaller 
tables 
– less general than LR(k), but still good in practice
– size of tables acceptable in practice 

• k == 1 in practice
– most parser generators, including yacc and 

jflex , are LALR(1)

Global Plan for LR(0) Parsing

• Goal: Set up the tables for parsing an LR(0) 
grammar
– Add S’ --> S$ to the grammar, i.e. solve the 

problem for a new grammar with terminator
– Compute parser states by starting with state 1 

containing added production, S’ --> .S$
– Form closures of states and shifting to complete 

diagram
– Convert diagram to transition table for PDA
– Step through parse using table and stack
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LR(0) Parser Generation
Example grammar: 

S’ ::= S $ // always add this production 
S ::= beep | { L }

L ::= S | L ; S

• Key idea: simulate where input might be in grammar 
as it reads tokens 

• "Where input might be in grammar" captured by set 
of items, which forms a state in the parser’s FSA 
– LR(0) item: lhs ::= rhs production, with dot in rhs 

somewhere marking what’s been read (shifted) so far 
• LR(k) item: also add k tokens of lookahead to each item 

– Initial item: S’ ::= . S $

Closure

Initial state is closure of initial item
• closure: if dot before non-terminal, add all 

productions for that non-terminal with dot at 
the start
– "epsilon transitions" 

Initial state (1): 
S’::= . S $ 
S ::= . beep

S ::= . { L }
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State Transitions
Given set of items, compute new state(s) for each 

symbol (terminal and non-terminal) after dot
– state transitions correspond to shift actions 

New item derived from old item by shifting dot over 
symbol 
– do closure to compute new state Initial state (1):

S’ ::= . S $ S ::= . beep S ::= . { L }
– State (2) reached on transition that shifts S: 

S’ ::= S . $ 

– State (3) reached on transition that shifts beep: 
S ::= beep . 

– State (4) reached on transition that shifts {: 
S ::= { . L }
L ::= . S 
L ::= . L ; S 
S ::= . beep
S ::= . { L }

Accepting Transitions

If state has S’ ::= ... . $ item, 
then add transition labeled$ to the accept 
action 

Example: 
S’ ::= S . $

has transition labeled $ to accept action 
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Reducing States

If state has lhs ::= rhs . item, then it has a 
reduce lhs ::= rhs action 

Example: 
S ::= beep .

has reduce S ::= beep action 

No label; this state always reduces this production
– what if other items in this state shift, or accept? 
– what if other items in this state reduce differently?

Rest of the States, Part 1
State (4): if shift beep, goto State (3) 
State (4): if shift {, goto State (4) 
State (4): if shift S, goto State (5) 
State (4): if shift L, goto State (6) 

State (5): 
L ::= S .

State (6): 
S ::= { L . }

L ::= L . ; S

State (6): if shift }, goto State (7) 
State (6): if shift ;, goto State (8) 



20

Rest of the States (Part 2)
State (7): 

S ::= { L } .

State (8): 
L ::= L ; . S 
S ::= . beep

S ::= . { L }

State (8): if shift beep, goto State (3) 
State (8): if shift {, goto State (4) 
State (8): if shift S, goto State (9) 

State (9): 
L ::= L ; S . (whew)

LR(0) State Diagram 

S’ --> .S$
S --> .{L}
S --> .beep

S --> beep.

S --> {.L}
L --> .S
L --> .L;S
S --> .{L}
S --> .beep

S’ --> S.$
L --> S.     

L --> L;.S
S --> .{L}
S --> beep

S --> {L.}
L --> L.;S

S --> {L}.

L --> L;S.     

S {

{

beep

{

S
beep

;

}
S

beep

L

1

2

3

4

5

6

7

8

9

S’::= S $
S ::= beep | { L }
L ::= S | L ; S
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Building Table of States & Transitions

Create a row for each state 
Create a column for each terminal, non-terminal, and $

For every "state (i): if shift X goto state (j)" transition: 
• if X is a terminal, put "shift, goto j" action in row i, column X
• if X is a non-terminal, put "goto j" action in row i, column X

For every "state (i): if $ accept" transition: 
• put "accept" action in row i, column $

For every "state (i): lhs ::= rhs." action: 
• put "reduce lhs ::= rhs" action in all columns of row i

Table of This Grammar

reduce L ::= L ; S9

g9s,g3s,g48

reduce S ::= { L }7

s,g8s,g76

reduce L ::= S5

g6g5s,g3s,g44

reduce S ::= beep3

a!2

g2s,g3s,g41

$LS;beep}{State
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Example

1                                                           { beep ; { beep } } $
1 { 4 beep ; { beep } } $
1 { 4 beep 3                                                    ; { beep } } $
1 { 4 S 5                                                       ; { beep } } $
1 { 4 L 6                                                       ; { beep } } $
1 { 4 L 6 ; 8                                                   { beep } } $
1 { 4 L 6 ; 8 { 4                                               beep } } $
1 { 4 L 6 ; 8 { 4 beep 3                                        } } $
1 { 4 L 6 ; 8 { 4 S 5                                           } } $
1 { 4 L 6 ; 8 { 4 L 6                                           } } $
1 { 4 L 6 ; 8 { 4 L 6  } 7                                 } $
1 { 4 L 6 ; 8 S 9  } $
1 { 4 L 6 } $
1 { 4 L 6 } 7 $
1 S 2 $
accept

reduce L ::= L ; S9

g9s,g3s,g48

reduce S ::= { L }7

s,g8s,g76

reduce L ::= S5

g6g5s,g3s,g44

reduce S ::= beep3

a!2

g2s,g3s,g41

$LS;beep}{St

S’::= S $
S ::= beep | { L }
L ::= S | L ; S

Problems In Shift-Reduce Parsing

Can write grammars that cannot be handled 
with shift-reduce parsing 

Shift/reduce conflict: 
• state has both shift action(s) and reduce actions 

Reduce/reduce conflict: 
• state has more than one reduce action
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Shift/Reduce Conflicts
LR(0) example: 

E ::= E + T | T 

State: E ::= E . + T

E ::= T .
– Can shift +
– Can reduce E ::= T 

LR(k) example: 
S ::= if E then S | 

if E then S else S | ...

State: S ::= if E then S .

S ::= if E then S . else S 

– Can shift else
– Can reduce S ::= if E then S

Avoiding Shift-Reduce Conflicts

Can rewrite grammar to remove conflict
– E.g. Matched Stmt vs. Unmatched Stmt

Can resolve in favor of shift action 
– try to find longest r.h.s. before reducing 

works well in practice 
yacc , jflex , et al. do this
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Reduce/Reduce Conflicts
Example: 

Stmt ::= Type id ; | LHS = Expr ; | ... 

... 
LHS ::= id | LHS [ Expr ] | ... 

... 
Type ::= id | Type [] | ... 

State: Type ::= id . 

LHS  ::= id .

Can reduce Type ::= id

Can reduce LHS  ::= id

Avoid Reduce/Reduce Conflicts

Can rewrite grammar to remove conflict 
– can be hard 

• e.g. C/C++ declaration vs. expression problem 
• e.g. MiniJava array declaration vs. array store problem 

Can resolve in favor of one of the reduce 
actions 
– but which? 
– yacc , jflex , et al. Pick reduce action for 

production listed textually first in specification
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Abstract Syntax Trees

The parser’s output is an abstract syntax tree 
(AST) representing the grammatical structure 
of the parsed input 

• ASTs represent only semantically meaningful 
aspects of input program, unlike concrete 
syntax trees which record the complete textual 
form of the input
– There’s no need to record keywords or punctuation 

like () , ; , else

– The rest of compiler only cares about the abstract 
structure

AST Node Classes

Each node in an AST is an instance of an AST class 
– IfStmt , AssignStmt , AddExpr , VarDecl , etc. 

Each AST class declares its own instance variables 
holding its AST subtrees 
– IfStmt has testExpr , thenStmt , and elseStmt

– AssignStmt has lhsVar and rhsExpr

– AddExpr has arg1Expr and arg2Expr

– VarDecl has typeExpr and varName
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AST Class Hierarchy

AST classes are organized into an inheritance hierarchy 
based on commonalities of meaning and structure 

• Each "abstract non-terminal" that has multiple 
alternative concrete forms will have an abstract class 
that’s the superclass of the various alternative forms 
– Stmt is abstract superclass of IfStmt , AssignStmt , etc. 
– Expr is abstract superclass of AddExpr , VarExpr , etc. 
– Type is abstract superclass of IntType , ClassType , etc. 

AST Extensions For Project
New variable declarations: 

– StaticVarDecl

New types: 
– DoubleType

– ArrayType

New/changed statements: 
– IfStmt can omit else branch 
– ForStmt
– BreakStmt

– ArrayAssignStmt

New expressions: 
– DoubleLiteralExpr
– OrExpr
– ArrayLookupExpr
– ArrayLengthExpr

– ArrayNewExpr
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Automatic Parser Generation in MiniJava

We use the CUP tool to automatically create a parser 
from a specification file, Parser/minijava.cup

The MiniJava Makefile automatically rebuilds the parser 
whenever its specification file changes 

A CUP file has several sections: 
– introductory declarations included with the generated parser 
– declarations of the terminals and nonterminals with their 

types 
– The AST node or other value returned when finished parsing 

that nonterminal or terminal 
– precedence declarations 
– productions + actions

Terminal and Nonterminal Declarations
Terminal declarations we saw before: 

/* reserved words: */ 

terminal CLASS, PUBLIC, STATIC, EXTENDS; 

... 

/* tokens with values: */ 

terminal String IDENTIFIER; 

terminal Integer INT_LITERAL;

Nonterminals are similar: 
nonterminal Program Program; 

nonterminal MainClassDecl MainClassDecl; 

nonterminal List/*<...>*/ ClassDecls; 

nonterminal RegularClassDecl ClassDecl; 

... 

nonterminal List/*<Stmt>*/ Stmts; 

nonterminal Stmt Stmt; 

nonterminal List/*<Expr>*/ Exprs; 

nonterminal List/*<Expr>*/ MoreExprs; 

nonterminal Expr Expr; 

nonterminal String Identifier;  
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Precedence Declarations
Can specify precedence and associativity of operators 

– equal precedence in a single declaration 
– lowest precedence textually first 
– specify left, right, or nonassoc with each declaration 

Examples: 
precedence left AND_AND; 
precedence nonassoc EQUALS_EQUALS,       

EXCLAIM_EQUALS; 
precedence left LESSTHAN, LESSEQUAL, 

GREATEREQUAL, GREATERTHAN; 
precedence left PLUS, MINUS; 
precedence left STAR, SLASH; 
precedence left EXCLAIM; 
precedence left PERIOD; 

Productions
All of the form: 

LHS ::=  RHS1 {: Java code 1 :} 
| RHS2 {: Java code 2 :} 
| ... 
| RHSn {: Java code n :};

Can label symbols in RHS with:var suffix to refer to its 
result value in Java code 

• varleft is set to line in input where var symbol was 

E.g.: Expr ::= Expr:arg1 PLUS Expr:arg2

{: RESULT = new AddExpr( arg1,arg2,arg1left);:} 
| INT_LITERAL:value{: RESULT = new IntLiteralExpr(   

value.intValue(),valueleft);:} 
| Expr:rcvr PERIOD Identifier:message OPEN_PAREN 

Exprs:args CLOSE_PAREN 
{: RESULT = new MethodCallExpr( 

rcvr,message,args,rcvrleft);:} 
| ... ;
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Error Handling

How to handle syntax error? 
Option 1: quit compilation 

+ easy 
- inconvenient for programmer 

Option 2: error recovery 
+ try to catch as many errors as possible on one compile 
- difficult to avoid streams of spurious errors 

Option 3: error correction 
+ fix syntax errors as part of compilation 
- hard!! 

Panic Mode Error Recovery
When finding a syntax error, skip tokens until reaching a 

“landmark”
• landmarks in MiniJava: ;, ), }
• once a landmark is found, hope to have gotten back on track 

In top-down parser, maintain set of landmark tokens as 
recursive descent proceeds 

• landmarks selected from terminals later in production 
• as parsing proceeds, set of landmarks will change, depending 

on the parsing context 

In bottom-up parser, can add special error 
nonterminals, followed by landmarks 

• if syntax error, then will skip tokens till seeing landmark, then 
reduce and continue normally 

• E.g.  Stmt ::= ... | error ; | { error } 

Expr ::= ... | ( error )


