
1

Syntactic Analysis

Syntactic analysis, or parsing, is the
second phase of compilation: The

token file is converted to an abstract
syntax tree.

Compiler Passes
Analysis

of input program
(front-end)

character
stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

2

Syntactic Analysis / Parsing

• Goal: Convert token stream to abstract syntax tree
• Abstract syntax tree (AST):

– Captures the structural features of the program
– Primary data structure for remainder of analysis

• Three Part Plan
– Study how context-free grammars specify syntax
– Study algorithms for parsing / building ASTs
– Study the miniJava Implementation

Context-free Grammars
• Compromise between

– REs, which can’t nest or specify recursive structure
– General grammars, too powerful, undecidable

• Context-free grammars are a sweet spot
– Powerful enough to describe nesting, recursion
– Easy to parse; but also allow restrictions for speed

• Not perfect
– Cannot capture semantics, as in, “variable must be

declared,” requiring later semantic pass
– Can be ambiguous

• EBNF, Extended Backus Naur Form, is popular
notation

3

CFG Terminology
• Terminals -- alphabet of language defined by CFG
• Nonterminals -- symbols defined in terms of

terminals and nonterminals
• Productions -- rules for how a nonterminal (lhs) is

defined in terms of a (possibly empty) sequence of
terminals and nonterminals
– Recursion is allowed!

• Multiple productions allowed for a nonterminal,
alternatives

• Start symbol -- root of the defining language

Program ::= Stmt
Stmt ::= if (Expr) then Stmt else Stmt
Stmt ::= while (Expr) do Stmt

EBNF Syntax of initial MiniJava

Program ::= MainClassDecl { ClassDecl }
MainClassDecl ::= class ID {

public static void main
(String [] ID) { { Stmt } }

ClassDecl ::= class ID [extends ID] {
{ ClassVarDecl } { MethodDecl } }

ClassVarDecl ::= Type ID ;
MethodDecl ::= public Type ID

([Formal { , Formal }])
{ { Stmt } return Expr ; }

Formal ::= Type ID
Type ::= int | boolean | ID

4

Initial miniJava [continued]
Stmt ::= Type ID ;

| { {Stmt} }

| if (Expr) Stmt else Stmt
| while (Expr) Stmt
| System.out.println (Expr) ;
| ID = Expr ;

Expr ::= Expr Op Expr
| ! Expr
| Expr . ID ([Expr { , Expr }])
| ID | this

| Integer | true | false

| (Expr)

Op ::= + | - | * | /
| < | <= | >= | > | == | != | &&

RE Specification of initial MiniJava Lex
Program ::= (Token | Whitespace)*
Token ::= ID | Integer | ReservedWord | Operator |

Delimiter
ID ::= Letter (Letter | Digit)*
Letter ::= a | ... | z | A | ... | Z

Digit ::= 0 | ... | 9

Integer ::= Digit +

ReservedWord::= class | public | static | extends |
void | int | boolean | if | else |
while| return| true| false| this | new | String

| main | System.out.println
Operator ::= + | - | * | / | < | <= | >= | > | == |

!= | && | !

Delimiter ::= ; | . | , | = | (|) | { | } | [|]

5

Derivations and Parse Trees

Derivation: a sequence of expansion steps,
beginning with a start symbol and leading to a
sequence of terminals

Parsing: inverse of derivation
– Given a sequence of terminals (a\k\a tokens) want

to recover the nonterminals representing structure

Can represent derivation as a parse tree, that
is, the concrete syntax tree

Example Grammar

E ::= E op E | - E | (E) | id

op ::= + | - | * | /

a * (b + - c)

6

Ambiguity

• Some grammars are ambiguous
– Multiple distinct parse trees for the same terminal

string

• Structure of the parse tree captures much of
the meaning of the program
– ambiguity implies multiple possible meanings for

the same program

Famous Ambiguity: “Dangling Else”
Stmt ::= ... |

if (Expr) Stmt |

if (Expr) Stmt else Stmt

if (e1) if (e2) s1 else s2 : if (e1) if (e2) s1 else s2

7

Resolving Ambiguity

• Option 1: add a meta-rule
– For example “else associates with closest

previous if”
• works, keeps original grammar intact
• ad hoc and informal

Resolving Ambiguity [continued]

Option 2: rewrite the grammar to resolve
ambiguity explicitly

Stmt ::= MatchedStmt | UnmatchedStmt

MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt

UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

– formal, no additional rules beyond syntax
– sometimes obscures original grammar

8

Resolving Ambiguity Example

Stmt ::= MatchedStmt | UnmatchedStmt

MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt

UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

if (e1) if (e2) s1 else s2

Resolving Ambiguity [continued]

Option 3: redesign the language to remove the
ambiguity

Stmt ::= ... |
if Expr then Stmt end |
if Expr then Stmt else Stmt end

– formal, clear, elegant
– allows sequence of Stmts in then and else

branches, no { , } needed
– extra end required for every if

9

Another Famous Example

E ::= E Op E | - E | (E) | id

Op ::= + | - | * | /

a + b * c : a + b * c

Resolving Ambiguity (Option 1)
Add some meta-rules, e.g. precedence and

associativity rules

Example:
E ::= E Op E | - E | E ++

| (E) | id

Op::= + | - | * | / | %

| ** | == | < | &&

| ||

LeftLowest||

Left&&

None==, <

Left+, -

Left*, /, %

Right** (Exp)

RightPrefix -

LeftHighestPostfix ++

AssocPrecedOperator

10

Removing Ambiguity (Option 2)

Option2: Modify the grammar to explicitly resolve the
ambiguity

Strategy:
• create a nonterminal for each precedence level
• expr is lowest precedence nonterminal,

each nonterminal can be rewritten with higher
precedence operator, highest precedence
operator includes atomic exprs

• at each precedence level, use:
– left recursion for left-associative operators
– right recursion for right-associative operators
– no recursion for non-associative operators

Redone Example
E ::= E0

E0 ::= E0 || E1 | E1 left associative

E1 ::= E1 && E2 | E2 left associative

E2 ::= E3 (== | <) E3 | E3 non associative

E3 ::= E3 (+ | -) E4 | E4 left associative

E4 ::= E4 (* | / | %) E5 | E5 left associative

E5 ::= E6 ** E5 | E6 right associative

E6 ::= - E6 | E7 right associative

E7 ::= E7 ++ | E8 left associative

E8 ::= id | (E)

11

Designing A Grammar

Concerns:
– Accuracy
– Unambiguity
– Formality
– Readability, Clarity
– Ability to be parsed by a particular algorithm:

• Top down parser ==> LL(k) Grammar
• Bottom up Parser ==> LR(k) Grammar

– Ability to be implemented using particular approach
• By hand
• By automatic tools

Parsing Algorithms

Given a grammar, want to parse the input
programs
– Check legality
– Produce AST representing the structure
– Be efficient

• Kinds of parsing algorithms
– Top down
– Bottom up

12

Top Down Parsing

Build parse tree from the top (start symbol) down to
leaves (terminals)

Basic issue:
• when "expanding" a nonterminal with some r.h.s., how

to pick which r.h.s.?

E.g.
Stmts ::= Call | Assign | If | While
Call ::= Id (Expr {,Expr})
Assign ::= Id = Expr ;
If ::= if Test then Stmts end

| if Test then Stmts else Stmts end

While ::= while Test do Stmts end

Solution: look at input tokens to help decide

Predictive Parser

Predictive parser: top-down parser that can select rhs
by looking at most k input tokens (the lookahead)

Efficient:
– no backtracking needed
– linear time to parse

Implementation of predictive parsers:
– recursive-descent parser

• each nonterminal parsed by a procedure
• call other procedures to parse sub-nonterminals, recursively
• typically written by hand

– table-driven parser
• PDA:like table-driven FSA, plus stack to do recursive FSA calls
• typically generated by a tool from a grammar specification

13

LL(k) Grammars
Can construct predictive parser automatically / easily if

grammar is LL(k)
• Left-to-right scan of input, Leftmost derivation
• k tokens of look ahead needed, ≥ 1

Some restrictions:
• no ambiguity (true for any parsing algorithm)
• no common prefixes of length ≥ k:

If ::= if Test then Stmts end |
if Test then Stmts else Stmts end

• no left recursion:
E ::= E Op E | ...

• a few others
Restrictions guarantee that, given k input tokens, can always
select correct rhs to expand nonterminal. Easy to do by hand in
recursive-descent parser

Eliminating common prefixes

Can left factor common prefixes to eliminate them
– create new nonterminal for different suffixes
– delay choice till after common prefix

• Before:
If ::= if Test then Stmts end |

if Test then Stmts else Stmts end

• After:
If ::= if Test then Stmts IfCont

IfCont ::= end | else Stmts end

14

Eliminating Left Recursion

• Can Rewrite the grammar to eliminate left recursion
• Before

E ::= E + T | T
T ::= T * F | F

F ::= id | ...

• After
E ::= T ECon

ECon ::= + T ECon | ε
T ::= F TCon

TCon ::= * F TCon | ε
F ::= id | ...

Bottom Up Parsing

Construct parse tree for input from leaves up
– reducing a string of tokens to single start symbol

(inverse of deriving a string of tokens from start
symbol)

“Shift-reduce” strategy:
– read (“shift”) tokens until seen r.h.s. of “correct”

production
– reduce handle to l.h.s. nonterminal, then continue
– done when all input read and reduced to start

nonterminal

A ::= bc.Dxyza bcde f
^

15

LR(k)

• LR(k) parsing
– Left-to-right scan of input, Rightmost derivation
– k tokens of look ahead

• Strictly more general than LL(k)
– Gets to look at whole rhs of production before deciding what

to do, not just first k tokens of rhs
– can handle left recursion and common prefixes fine
– Still as efficient as any top-down or bottom-up parsing

method

• Complex to implement
– need automatic tools to construct parser from grammar

LR Parsing Tables

Construct parsing tables implementing a FSA with a
stack
• rows: states of parser
• columns: token(s) of lookahead
• entries: action of parser

• shift, goto state X
• reduce production “X ::= RHS ”
• accept
• error

Algorithm to construct FSA similar to algorithm to build
DFA from NFA
• each state represents set of possible places in parsing

LR(k) algorithm builds huge tables

16

LALR-Look Ahead LR

LALR(k) algorithm has fewer states ==> smaller
tables
– less general than LR(k), but still good in practice
– size of tables acceptable in practice

• k == 1 in practice
– most parser generators, including yacc and

jflex , are LALR(1)

Global Plan for LR(0) Parsing

• Goal: Set up the tables for parsing an LR(0)
grammar
– Add S’ --> S$ to the grammar, i.e. solve the

problem for a new grammar with terminator
– Compute parser states by starting with state 1

containing added production, S’ --> .S$
– Form closures of states and shifting to complete

diagram
– Convert diagram to transition table for PDA
– Step through parse using table and stack

17

LR(0) Parser Generation
Example grammar:

S’ ::= S $ // always add this production
S ::= beep | { L }

L ::= S | L ; S

• Key idea: simulate where input might be in grammar
as it reads tokens

• "Where input might be in grammar" captured by set
of items, which forms a state in the parser’s FSA
– LR(0) item: lhs ::= rhs production, with dot in rhs

somewhere marking what’s been read (shifted) so far
• LR(k) item: also add k tokens of lookahead to each item

– Initial item: S’ ::= . S $

Closure

Initial state is closure of initial item
• closure: if dot before non-terminal, add all

productions for that non-terminal with dot at
the start
– "epsilon transitions"

Initial state (1):
S’::= . S $
S ::= . beep

S ::= . { L }

18

State Transitions
Given set of items, compute new state(s) for each

symbol (terminal and non-terminal) after dot
– state transitions correspond to shift actions

New item derived from old item by shifting dot over
symbol
– do closure to compute new state Initial state (1):

S’ ::= . S $ S ::= . beep S ::= . { L }
– State (2) reached on transition that shifts S:

S’ ::= S . $

– State (3) reached on transition that shifts beep:
S ::= beep .

– State (4) reached on transition that shifts {:
S ::= { . L }
L ::= . S
L ::= . L ; S
S ::= . beep
S ::= . { L }

Accepting Transitions

If state has S’ ::= $ item,
then add transition labeled$ to the accept
action

Example:
S’ ::= S . $

has transition labeled $ to accept action

19

Reducing States

If state has lhs ::= rhs . item, then it has a
reduce lhs ::= rhs action

Example:
S ::= beep .

has reduce S ::= beep action

No label; this state always reduces this production
– what if other items in this state shift, or accept?
– what if other items in this state reduce differently?

Rest of the States, Part 1
State (4): if shift beep, goto State (3)
State (4): if shift {, goto State (4)
State (4): if shift S, goto State (5)
State (4): if shift L, goto State (6)

State (5):
L ::= S .

State (6):
S ::= { L . }

L ::= L . ; S

State (6): if shift }, goto State (7)
State (6): if shift ;, goto State (8)

20

Rest of the States (Part 2)
State (7):

S ::= { L } .

State (8):
L ::= L ; . S
S ::= . beep

S ::= . { L }

State (8): if shift beep, goto State (3)
State (8): if shift {, goto State (4)
State (8): if shift S, goto State (9)

State (9):
L ::= L ; S . (whew)

LR(0) State Diagram

S’ --> .S$
S --> .{L}
S --> .beep

S --> beep.

S --> {.L}
L --> .S
L --> .L;S
S --> .{L}
S --> .beep

S’ --> S.$
L --> S.

L --> L;.S
S --> .{L}
S --> beep

S --> {L.}
L --> L.;S

S --> {L}.

L --> L;S.

S {

{

beep

{

S
beep

;

}
S

beep

L

1

2

3

4

5

6

7

8

9

S’::= S $
S ::= beep | { L }
L ::= S | L ; S

21

Building Table of States & Transitions

Create a row for each state
Create a column for each terminal, non-terminal, and $

For every "state (i): if shift X goto state (j)" transition:
• if X is a terminal, put "shift, goto j" action in row i, column X
• if X is a non-terminal, put "goto j" action in row i, column X

For every "state (i): if $ accept" transition:
• put "accept" action in row i, column $

For every "state (i): lhs ::= rhs." action:
• put "reduce lhs ::= rhs" action in all columns of row i

Table of This Grammar

reduce L ::= L ; S9

g9s,g3s,g48

reduce S ::= { L }7

s,g8s,g76

reduce L ::= S5

g6g5s,g3s,g44

reduce S ::= beep3

a!2

g2s,g3s,g41

$LS;beep}{State

22

Example

1 { beep ; { beep } } $
1 { 4 beep ; { beep } } $
1 { 4 beep 3 ; { beep } } $
1 { 4 S 5 ; { beep } } $
1 { 4 L 6 ; { beep } } $
1 { 4 L 6 ; 8 { beep } } $
1 { 4 L 6 ; 8 { 4 beep } } $
1 { 4 L 6 ; 8 { 4 beep 3 } } $
1 { 4 L 6 ; 8 { 4 S 5 } } $
1 { 4 L 6 ; 8 { 4 L 6 } } $
1 { 4 L 6 ; 8 { 4 L 6 } 7 } $
1 { 4 L 6 ; 8 S 9 } $
1 { 4 L 6 } $
1 { 4 L 6 } 7 $
1 S 2 $
accept

reduce L ::= L ; S9

g9s,g3s,g48

reduce S ::= { L }7

s,g8s,g76

reduce L ::= S5

g6g5s,g3s,g44

reduce S ::= beep3

a!2

g2s,g3s,g41

$LS;beep}{St

S’::= S $
S ::= beep | { L }
L ::= S | L ; S

Problems In Shift-Reduce Parsing

Can write grammars that cannot be handled
with shift-reduce parsing

Shift/reduce conflict:
• state has both shift action(s) and reduce actions

Reduce/reduce conflict:
• state has more than one reduce action

23

Shift/Reduce Conflicts
LR(0) example:

E ::= E + T | T

State: E ::= E . + T

E ::= T .
– Can shift +
– Can reduce E ::= T

LR(k) example:
S ::= if E then S |

if E then S else S | ...

State: S ::= if E then S .

S ::= if E then S . else S

– Can shift else
– Can reduce S ::= if E then S

Avoiding Shift-Reduce Conflicts

Can rewrite grammar to remove conflict
– E.g. Matched Stmt vs. Unmatched Stmt

Can resolve in favor of shift action
– try to find longest r.h.s. before reducing

works well in practice
yacc , jflex , et al. do this

24

Reduce/Reduce Conflicts
Example:

Stmt ::= Type id ; | LHS = Expr ; | ...

...
LHS ::= id | LHS [Expr] | ...

...
Type ::= id | Type [] | ...

State: Type ::= id .

LHS ::= id .

Can reduce Type ::= id

Can reduce LHS ::= id

Avoid Reduce/Reduce Conflicts

Can rewrite grammar to remove conflict
– can be hard

• e.g. C/C++ declaration vs. expression problem
• e.g. MiniJava array declaration vs. array store problem

Can resolve in favor of one of the reduce
actions
– but which?
– yacc , jflex , et al. Pick reduce action for

production listed textually first in specification

25

Abstract Syntax Trees

The parser’s output is an abstract syntax tree
(AST) representing the grammatical structure
of the parsed input

• ASTs represent only semantically meaningful
aspects of input program, unlike concrete
syntax trees which record the complete textual
form of the input
– There’s no need to record keywords or punctuation

like () , ; , else

– The rest of compiler only cares about the abstract
structure

AST Node Classes

Each node in an AST is an instance of an AST class
– IfStmt , AssignStmt , AddExpr , VarDecl , etc.

Each AST class declares its own instance variables
holding its AST subtrees
– IfStmt has testExpr , thenStmt , and elseStmt

– AssignStmt has lhsVar and rhsExpr

– AddExpr has arg1Expr and arg2Expr

– VarDecl has typeExpr and varName

26

AST Class Hierarchy

AST classes are organized into an inheritance hierarchy
based on commonalities of meaning and structure

• Each "abstract non-terminal" that has multiple
alternative concrete forms will have an abstract class
that’s the superclass of the various alternative forms
– Stmt is abstract superclass of IfStmt , AssignStmt , etc.
– Expr is abstract superclass of AddExpr , VarExpr , etc.
– Type is abstract superclass of IntType , ClassType , etc.

AST Extensions For Project
New variable declarations:

– StaticVarDecl

New types:
– DoubleType

– ArrayType

New/changed statements:
– IfStmt can omit else branch
– ForStmt
– BreakStmt

– ArrayAssignStmt

New expressions:
– DoubleLiteralExpr
– OrExpr
– ArrayLookupExpr
– ArrayLengthExpr

– ArrayNewExpr

27

Automatic Parser Generation in MiniJava

We use the CUP tool to automatically create a parser
from a specification file, Parser/minijava.cup

The MiniJava Makefile automatically rebuilds the parser
whenever its specification file changes

A CUP file has several sections:
– introductory declarations included with the generated parser
– declarations of the terminals and nonterminals with their

types
– The AST node or other value returned when finished parsing

that nonterminal or terminal
– precedence declarations
– productions + actions

Terminal and Nonterminal Declarations
Terminal declarations we saw before:

/* reserved words: */

terminal CLASS, PUBLIC, STATIC, EXTENDS;

...

/* tokens with values: */

terminal String IDENTIFIER;

terminal Integer INT_LITERAL;

Nonterminals are similar:
nonterminal Program Program;

nonterminal MainClassDecl MainClassDecl;

nonterminal List/*<...>*/ ClassDecls;

nonterminal RegularClassDecl ClassDecl;

...

nonterminal List/*<Stmt>*/ Stmts;

nonterminal Stmt Stmt;

nonterminal List/*<Expr>*/ Exprs;

nonterminal List/*<Expr>*/ MoreExprs;

nonterminal Expr Expr;

nonterminal String Identifier;

28

Precedence Declarations
Can specify precedence and associativity of operators

– equal precedence in a single declaration
– lowest precedence textually first
– specify left, right, or nonassoc with each declaration

Examples:
precedence left AND_AND;
precedence nonassoc EQUALS_EQUALS,

EXCLAIM_EQUALS;
precedence left LESSTHAN, LESSEQUAL,

GREATEREQUAL, GREATERTHAN;
precedence left PLUS, MINUS;
precedence left STAR, SLASH;
precedence left EXCLAIM;
precedence left PERIOD;

Productions
All of the form:

LHS ::= RHS1 {: Java code 1 :}
| RHS2 {: Java code 2 :}
| ...
| RHSn {: Java code n :};

Can label symbols in RHS with:var suffix to refer to its
result value in Java code

• varleft is set to line in input where var symbol was

E.g.: Expr ::= Expr:arg1 PLUS Expr:arg2

{: RESULT = new AddExpr(arg1,arg2,arg1left);:}
| INT_LITERAL:value{: RESULT = new IntLiteralExpr(

value.intValue(),valueleft);:}
| Expr:rcvr PERIOD Identifier:message OPEN_PAREN

Exprs:args CLOSE_PAREN
{: RESULT = new MethodCallExpr(

rcvr,message,args,rcvrleft);:}
| ... ;

29

Error Handling

How to handle syntax error?
Option 1: quit compilation

+ easy
- inconvenient for programmer

Option 2: error recovery
+ try to catch as many errors as possible on one compile
- difficult to avoid streams of spurious errors

Option 3: error correction
+ fix syntax errors as part of compilation
- hard!!

Panic Mode Error Recovery
When finding a syntax error, skip tokens until reaching a

“landmark”
• landmarks in MiniJava: ;,), }
• once a landmark is found, hope to have gotten back on track

In top-down parser, maintain set of landmark tokens as
recursive descent proceeds

• landmarks selected from terminals later in production
• as parsing proceeds, set of landmarks will change, depending

on the parsing context

In bottom-up parser, can add special error
nonterminals, followed by landmarks

• if syntax error, then will skip tokens till seeing landmark, then
reduce and continue normally

• E.g. Stmt ::= ... | error ; | { error }

Expr ::= ... | (error)

