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Optimizations

• Use added passes to identify inefficiencies in 

intermediate or target code 

• Replace with equivalent ("has the same externally 

visible behavior“) but better sequences 

• Target-independent optimizations best done on IL 

code 

• Target-dependent optimizations best done on target 

code 

• “Optimize” overly optimistic: “usually improve” is 

generally more accurate

An example

x = a[i] + b[2]; 

c[i] = x - 5;

t1 = *(fp + ioffset);  // i

t2 = t1 * 4; 

t3 = fp + t2; 

t4 = *(t3 + aoffset);  // a[i] 

t5 = 2; 

t6 = t5 * 4; 

t7 = fp + t6; 

t8 = *(t7 + boffset);  // b[2] 

t9 = t4 + t8; *(fp + xoffset) = t9; // x = …

t10 = *(fp + xoffset); // x 

t11 = 5; 

t12 = t10 - t11; 

t13 = *(fp + ioffset); // i

t14 = t13 * 4; 

t15 = fp + t14; 

*(t15 + coffset) = t12; // c[i] := …

Kinds of optimizations

• peephole: look at adjacent instructions 

• local: look at straight-line sequence of statements 

• intraprocedural: look at whole procedure

• interprocedural: look across procedures

• Larger scope => better optimization but more cost 

and complexity

An example: local common 

subexpression elimination

• Avoid repeating the same calculation 

• Eliminate redundant loads

• Keep track of available expressions: … a[i] + b[i] … 

t1 = *(fp + ioffset); 

t2 = t1 * 4; 

t3 = fp + t2; 

t4 = *(t3 + aoffset); 

t5 = *(fp + ioffset); 

t6 = t5 * 4; 

t7 = fp + t6; 

t8 = *(t7 + boffset); 

t9 = t4 + t8;

But which are common subexpressions?

• Use data-flow analysis to determine the set of 

“available expressions”

• Based on that, if an expression is available, reuse it 

rather than recompute it

• Data-flow setup (see p. 419 in book)

• DEExpr[n] = downward exposed expressions

• ExprKill[n] = expressions killed by block n

• Avail[n] = mpred(n)(DEExpr(m)(Avail(m) 
ExprKill(m)))

• Avail[n0] = 
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Peephole Optimization

• After target code generation, look at adjacent 

instructions (a “peephole” on the code stream) 

– try to replace adjacent instructions with something 

faster 

sw $8,  12($fp) 

lw $12, 12($fp)

sw $8,  12($fp) 

mv $12, $8

More Examples: 68K

• Do complex instruction selection through peep hole  
optimization

sub sp, 4, sp 

mov r1, 0(sp) 
mov r1, -(sp) 

mov 12(fp), r1 

add r1, 1, r1 

mov r1, 12(fp)

inc 12(fp)

Peephole Optimization of Jumps

• Eliminate jumps to jumps

• Eliminate jumps after conditional branches 

• “Adjacent” instructions = “adjacent in control flow” 

• Source code 
if (a < b) { 

if (c < d) { // do nothing

} else {

stmt1; 

} 

} else { 

stmt2;

} 

Algebraic Simplification

• “constant folding”, “strength reduction” 

– z = 3 + 4; 

– z = x + 0; 

– z = x * 1; 

– z = x * 2; 

– z = x * 8; 

– z = x / 8; 

– double x, y, z; 

– z = (x + y) - y; 

• Can be done by peephole optimizer, or by code generator

• Why do these examples happen?

Local Optimizations

• Analysis and optimizations within a basic block 

• Basic block: straight-line sequence of statements 

– no control flow into or out of middle of sequence 

• Better than peephole 

• Not too hard to implement 

• Machine-independent, if done on intermediate code

Local Constant Propagation

• If variable assigned a constant, replace downstream 

uses of the variable with constant 

• Can enable more constant folding 

– Code; unoptimized intermediate code: 

final int count = 10; 

... 

x = count * 5; 

y = x ^ 3; 

t1 = 10; 

t2 = 5; 

t3 = t1 * t2; 

x = t3; 

t4 = x; 

t5 = 3; 

t6 = exp(t4, t5); 

y = t6; 



12/3/2008

3

Local Dead Assignment Elimination

• If l.h.s. of assignment never referenced again before 

being overwritten, then can delete assignment 

– Why would this happen?  Clean-up after previous 

optimizations, often

final int count = 10; 

... 

x = count * 5; 

y = x ^ 3; 

x = 7;

t1 = 10; 

t2 = 5; 

t3 = 50; 

x = 50; 

t4 = 50; 

t5 = 3; 

t6 = 125000; 

y = 125000; 

x = 7; 

Intermediate code after constant propagation

Intraprocedural optimizations

• Enlarge scope of analysis to whole procedure 

– more opportunities for optimization 

– have to deal with branches, merges, and loops 

• Can do constant propagation, common 

subexpression elimination, etc. at “global” level 

• Can do new things, e.g. loop optimizations 

• Optimizing compilers usually work at this level

Code Motion

• Goal: move loop-invariant calculations out of loops 

• Can do at source level or at intermediate code level

for (i = 0; i < 10; i = i+1) { 

a[i] = a[i] + b[j]; 

z = z + 10000; 

}

t1 = b[j]; 

t2 = 10000; 

for (i = 0; i < 10; i = i+1) { 

a[i] = a[i] + t1; 

z = z + t2; 

} 

Code Motion at IL

for (i = 0; i < 10; i = i+1) { 

a[i] = b[j]; 

} 

*(fp + ioffset) = 0; 

label top; 

t0 = *(fp + ioffset); 

iffalse (t0 < 10) goto done; 

t1 = *(fp + joffset); 

t2 = t1 * 4; 

t3 = fp + t2; 

t4 = *(t3 + boffset); 

t5 = *(fp + ioffset); 

t6 = t5 * 4; 

t7 = fp + t6; *(t7 + aoffset) = t4; 

t9 = *(fp + ioffset); 

t10 = t9 + 1; 

*(fp + ioffset) = t10; 

goto top; 

label done;

Unoptimized

intermediate code

Loop Induction Variable Elimination

• For-loop index is induction variable 

– incremented each time around loop 

– offsets & pointers calculated from it 

• If used only to index arrays, can rewrite with pointers 

– compute initial offsets/pointers before loop 

– increment offsets/pointers each time around loop 

– no expensive scaling in loop

– can then do loop-invariant code motion 

for (i = 0; i < 10; i = i+1) { 

a[i] = a[i] + x; 

} => transformed to

for (p = &a[0]; p < &a[10]; p = p+4) { 

*p = *p + x; 

} 

Related aside: 

proving properties 

of loops

Intraprocedural Optimizations (reprise)

• Control flow graph (CFG) captures flow of control 

– nodes are IL statements, or whole basic blocks 

– edges represent control flow 

– node with multiple successors = branch/switch 

– node with multiple predecessors = merge 

– loop in graph = loop 

• Data flow graph (DFG) capture flow of data, e.g. def/use chains: 

– nodes are def(inition)s and uses 

– edge from def to use 

– a def can reach multiple uses 

– a use can have multiple reaching defs
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Analysis and Transformation

• Each optimization is made up of 

– some number of analyses 

– followed by a transformation 

• Analyze CFG and/or DFG by propagating info forward or 

backward along CFG and/or DFG edges 

– edges called program points 

– merges in graph require combining info 

– loops in graph require iterative approximation 

• Perform improving transformations based on info computed 

– have to wait until any iterative approximation has converged 

• Analysis must be conservative/safe/sound so that 

transformations preserve program behavior

Example: Constant Propagation, Folding

• Can use either the CFG or the DFG 

• CFG analysis info: table mapping each variable in scope to one 

of 

– a particular constant 

– NonConstant

– Undefined 

• Transformation at each instruction: 

– if reference a variable that the table maps to a constant,  

then replace with that constant (constant propagation) 

– if r.h.s. expression involves only constants, and has no side-

effects, then perform operation at compile-time and replace 

r.h.s. with constant result (constant folding) 

• For best analysis, do constant folding as part of analysis, to 

learn all constants in one pass

Merging data flow analysis info

• Constraint: merge results must be sound 

– if something is believed true after the merge, then 

it must be true no matter which path we took into 

the  merge 

– only things true along all predecessors are true 

after the merge 

• To merge two maps of constant information, build 

map by merging corresponding variable information 

• To merge information about two variable

– if one is Undefined, keep the other 

– if both same constant, keep that constant 

– otherwise, degenerate to NonConstant

Example Merges

int x

x := 5 x := 5

x ==?

int x

x := 5 x := 4

x ==?

int x

x := 5

x ==?

Example Merges

int x

x := 5

x ==?

int x

x := 5 x := f(…)

x ==?

How to analyze loops

i = 0; 

x = 10; 

y = 20; 

while (...) { 

// what’s true here? 

... 

i = i + 1; 

y = 30; 

} 

// what’s true here? 

... x ... i ... y ... 

• Safe but imprecise: 

forget everything 

when we enter or 

exit a loop 

• Precise but unsafe: 

keep everything 

when we enter or 

exit a loop 

• Can we do better? 
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Loop Terminology 

preheader

entry edge

head

back 

edge

tail

loop

exit edge

Optimistic Iterative Analysis

• Assuming information at loop head is same as 

information at loop entry 

• Then analyze loop body, computing information at 

back edge 

• Merge information at loop back edge and loop entry 

• Test if merged information is same as original 

assumption 

– If so, then we’re done 

– If not, then replace previous assumption with 

merged information,

– and go back to analysis of loop body

Example

i = 0; 

x = 10; 

y = 20; 

while (...) { 

// what’s true here? 

... 

i = i + 1; 

y = 30; } 

// what’s true here? 

... x ... i ... y ...

Why does this work?

• Why are the results always conservative? 

• Because if the algorithm stops, then 

– the loop head info is at least as conservative as both the  

loop entry info and the loop back edge info 

– the analysis within the loop body is conservative, given the  

assumption that the loop head info is conservative 

• Why does the algorithm terminate? 

• It might not! 

• But it does if: 

– there are only a finite number of times we could merge  

values together without reaching the worst case info (e.g. 

NotConstant)

Interprocedural Optimization

• Expand scope of analysis to procedures calling each 

other 

• Can do local & intraprocedural optimizations at larger 

scope 

• Can do new optimizations, e.g. inlining 

Inlining: replace call with body

final double pi = 3.1415927; 

double circle_area(double radius) { 

return pi * (radius * radius); 

} 

... 

double r = 5.0; 

... 

double a = circle_area(r); 

• After inlining
... 

double r = 5.0; 

... 

double a = pi * r * r; 

• (Then what?)
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More interprocedural analyses

• Needed to support interprocedural optimizations

• Alias analysis

– Different references referring to the same memory 

locations

– may-alias vs. must-alias, context- and flow-

sensitivity

• Escape analysis (pointers that are live on exit from 

procedures), shape analysis (static analysis of the 

properties of dynamic data structures), …
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Supporting representations include

• Call graph

• Program dependence graph

• …
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Summary

• Enlarging scope of analysis yields better results 

– today, most optimizing compilers work at the 

intraprocedural (a\k\a global) level 

• Optimizations organized as collections of passes, 

each rewriting IL in place into better version 

• Presence of optimizations makes other parts of 

compiler (e.g. intermediate and target code 

generation) easier to write


