
12/3/2008

1

Optimization

David Notkin

Autumn 2008

Optimizations

• Use added passes to identify inefficiencies in

intermediate or target code

• Replace with equivalent ("has the same externally

visible behavior“) but better sequences

• Target-independent optimizations best done on IL

code

• Target-dependent optimizations best done on target

code

• “Optimize” overly optimistic: “usually improve” is

generally more accurate

An example

x = a[i] + b[2];

c[i] = x - 5;

t1 = *(fp + ioffset); // i

t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset); // a[i]

t5 = 2;

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset); // b[2]

t9 = t4 + t8; *(fp + xoffset) = t9; // x = …

t10 = *(fp + xoffset); // x

t11 = 5;

t12 = t10 - t11;

t13 = *(fp + ioffset); // i

t14 = t13 * 4;

t15 = fp + t14;

*(t15 + coffset) = t12; // c[i] := …

Kinds of optimizations

• peephole: look at adjacent instructions

• local: look at straight-line sequence of statements

• intraprocedural: look at whole procedure

• interprocedural: look across procedures

• Larger scope => better optimization but more cost

and complexity

An example: local common

subexpression elimination

• Avoid repeating the same calculation

• Eliminate redundant loads

• Keep track of available expressions: … a[i] + b[i] …

t1 = *(fp + ioffset);

t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);

t5 = *(fp + ioffset);

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;

But which are common subexpressions?

• Use data-flow analysis to determine the set of

“available expressions”

• Based on that, if an expression is available, reuse it

rather than recompute it

• Data-flow setup (see p. 419 in book)

• DEExpr[n] = downward exposed expressions

• ExprKill[n] = expressions killed by block n

• Avail[n] = mpred(n)(DEExpr(m)(Avail(m)
ExprKill(m)))

• Avail[n0] =

CSE401 Au08 6

12/3/2008

2

Peephole Optimization

• After target code generation, look at adjacent

instructions (a “peephole” on the code stream)

– try to replace adjacent instructions with something

faster

sw $8, 12($fp)

lw $12, 12($fp)

sw $8, 12($fp)

mv $12, $8

More Examples: 68K

• Do complex instruction selection through peep hole
optimization

sub sp, 4, sp

mov r1, 0(sp)
mov r1, -(sp)

mov 12(fp), r1

add r1, 1, r1

mov r1, 12(fp)

inc 12(fp)

Peephole Optimization of Jumps

• Eliminate jumps to jumps

• Eliminate jumps after conditional branches

• “Adjacent” instructions = “adjacent in control flow”

• Source code
if (a < b) {

if (c < d) { // do nothing

} else {

stmt1;

}

} else {

stmt2;

}

Algebraic Simplification

• “constant folding”, “strength reduction”

– z = 3 + 4;

– z = x + 0;

– z = x * 1;

– z = x * 2;

– z = x * 8;

– z = x / 8;

– double x, y, z;

– z = (x + y) - y;

• Can be done by peephole optimizer, or by code generator

• Why do these examples happen?

Local Optimizations

• Analysis and optimizations within a basic block

• Basic block: straight-line sequence of statements

– no control flow into or out of middle of sequence

• Better than peephole

• Not too hard to implement

• Machine-independent, if done on intermediate code

Local Constant Propagation

• If variable assigned a constant, replace downstream

uses of the variable with constant

• Can enable more constant folding

– Code; unoptimized intermediate code:

final int count = 10;

...

x = count * 5;

y = x ^ 3;

t1 = 10;

t2 = 5;

t3 = t1 * t2;

x = t3;

t4 = x;

t5 = 3;

t6 = exp(t4, t5);

y = t6;

12/3/2008

3

Local Dead Assignment Elimination

• If l.h.s. of assignment never referenced again before

being overwritten, then can delete assignment

– Why would this happen? Clean-up after previous

optimizations, often

final int count = 10;

...

x = count * 5;

y = x ^ 3;

x = 7;

t1 = 10;

t2 = 5;

t3 = 50;

x = 50;

t4 = 50;

t5 = 3;

t6 = 125000;

y = 125000;

x = 7;

Intermediate code after constant propagation

Intraprocedural optimizations

• Enlarge scope of analysis to whole procedure

– more opportunities for optimization

– have to deal with branches, merges, and loops

• Can do constant propagation, common

subexpression elimination, etc. at “global” level

• Can do new things, e.g. loop optimizations

• Optimizing compilers usually work at this level

Code Motion

• Goal: move loop-invariant calculations out of loops

• Can do at source level or at intermediate code level

for (i = 0; i < 10; i = i+1) {

a[i] = a[i] + b[j];

z = z + 10000;

}

t1 = b[j];

t2 = 10000;

for (i = 0; i < 10; i = i+1) {

a[i] = a[i] + t1;

z = z + t2;

}

Code Motion at IL

for (i = 0; i < 10; i = i+1) {

a[i] = b[j];

}

*(fp + ioffset) = 0;

label top;

t0 = *(fp + ioffset);

iffalse (t0 < 10) goto done;

t1 = *(fp + joffset);

t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + boffset);

t5 = *(fp + ioffset);

t6 = t5 * 4;

t7 = fp + t6; *(t7 + aoffset) = t4;

t9 = *(fp + ioffset);

t10 = t9 + 1;

*(fp + ioffset) = t10;

goto top;

label done;

Unoptimized

intermediate code

Loop Induction Variable Elimination

• For-loop index is induction variable

– incremented each time around loop

– offsets & pointers calculated from it

• If used only to index arrays, can rewrite with pointers

– compute initial offsets/pointers before loop

– increment offsets/pointers each time around loop

– no expensive scaling in loop

– can then do loop-invariant code motion

for (i = 0; i < 10; i = i+1) {

a[i] = a[i] + x;

} => transformed to

for (p = &a[0]; p < &a[10]; p = p+4) {

*p = *p + x;

}

Related aside:

proving properties

of loops

Intraprocedural Optimizations (reprise)

• Control flow graph (CFG) captures flow of control

– nodes are IL statements, or whole basic blocks

– edges represent control flow

– node with multiple successors = branch/switch

– node with multiple predecessors = merge

– loop in graph = loop

• Data flow graph (DFG) capture flow of data, e.g. def/use chains:

– nodes are def(inition)s and uses

– edge from def to use

– a def can reach multiple uses

– a use can have multiple reaching defs

12/3/2008

4

Analysis and Transformation

• Each optimization is made up of

– some number of analyses

– followed by a transformation

• Analyze CFG and/or DFG by propagating info forward or

backward along CFG and/or DFG edges

– edges called program points

– merges in graph require combining info

– loops in graph require iterative approximation

• Perform improving transformations based on info computed

– have to wait until any iterative approximation has converged

• Analysis must be conservative/safe/sound so that

transformations preserve program behavior

Example: Constant Propagation, Folding

• Can use either the CFG or the DFG

• CFG analysis info: table mapping each variable in scope to one

of

– a particular constant

– NonConstant

– Undefined

• Transformation at each instruction:

– if reference a variable that the table maps to a constant,

then replace with that constant (constant propagation)

– if r.h.s. expression involves only constants, and has no side-

effects, then perform operation at compile-time and replace

r.h.s. with constant result (constant folding)

• For best analysis, do constant folding as part of analysis, to

learn all constants in one pass

Merging data flow analysis info

• Constraint: merge results must be sound

– if something is believed true after the merge, then

it must be true no matter which path we took into

the merge

– only things true along all predecessors are true

after the merge

• To merge two maps of constant information, build

map by merging corresponding variable information

• To merge information about two variable

– if one is Undefined, keep the other

– if both same constant, keep that constant

– otherwise, degenerate to NonConstant

Example Merges

int x

x := 5 x := 5

x ==?

int x

x := 5 x := 4

x ==?

int x

x := 5

x ==?

Example Merges

int x

x := 5

x ==?

int x

x := 5 x := f(…)

x ==?

How to analyze loops

i = 0;

x = 10;

y = 20;

while (...) {

// what’s true here?

...

i = i + 1;

y = 30;

}

// what’s true here?

... x ... i ... y ...

• Safe but imprecise:

forget everything

when we enter or

exit a loop

• Precise but unsafe:

keep everything

when we enter or

exit a loop

• Can we do better?

12/3/2008

5

Loop Terminology

preheader

entry edge

head

back

edge

tail

loop

exit edge

Optimistic Iterative Analysis

• Assuming information at loop head is same as

information at loop entry

• Then analyze loop body, computing information at

back edge

• Merge information at loop back edge and loop entry

• Test if merged information is same as original

assumption

– If so, then we’re done

– If not, then replace previous assumption with

merged information,

– and go back to analysis of loop body

Example

i = 0;

x = 10;

y = 20;

while (...) {

// what’s true here?

...

i = i + 1;

y = 30; }

// what’s true here?

... x ... i ... y ...

Why does this work?

• Why are the results always conservative?

• Because if the algorithm stops, then

– the loop head info is at least as conservative as both the

loop entry info and the loop back edge info

– the analysis within the loop body is conservative, given the

assumption that the loop head info is conservative

• Why does the algorithm terminate?

• It might not!

• But it does if:

– there are only a finite number of times we could merge

values together without reaching the worst case info (e.g.

NotConstant)

Interprocedural Optimization

• Expand scope of analysis to procedures calling each

other

• Can do local & intraprocedural optimizations at larger

scope

• Can do new optimizations, e.g. inlining

Inlining: replace call with body

final double pi = 3.1415927;

double circle_area(double radius) {

return pi * (radius * radius);

}

...

double r = 5.0;

...

double a = circle_area(r);

• After inlining
...

double r = 5.0;

...

double a = pi * r * r;

• (Then what?)

12/3/2008

6

More interprocedural analyses

• Needed to support interprocedural optimizations

• Alias analysis

– Different references referring to the same memory

locations

– may-alias vs. must-alias, context- and flow-

sensitivity

• Escape analysis (pointers that are live on exit from

procedures), shape analysis (static analysis of the

properties of dynamic data structures), …

CSE401 Au08 31

Supporting representations include

• Call graph

• Program dependence graph

• …

CSE401 Au08 32

Summary

• Enlarging scope of analysis yields better results

– today, most optimizing compilers work at the

intraprocedural (a\k\a global) level

• Optimizations organized as collections of passes,

each rewriting IL in place into better version

• Presence of optimizations makes other parts of

compiler (e.g. intermediate and target code

generation) easier to write

