
9/29/2008

1

Syntactic Analysis

David Notkin

Autumn Quarter 2008

Syntactic Analysis / Parsing

• Goal: Convert token stream to abstract syntax tree

• Abstract syntax tree (AST)

– Captures the structural features of the program

– Primary data structure for remainder of analysis

• Three Part Plan

– Study how context-free grammars specify syntax

– Study algorithms for parsing / building ASTs

– Study the miniJava Implementation

CSE401 Au08 2

But first, some fun quotations

• At least for the people who send

me mail about a new language

that they're designing, the general

advice is: do it to learn about how

to write a compiler. [Dennis

Ritchie]

• Thompson and Ritchie were

among the first to realize that

hardware and compiler technology

had become good enough that an

entire operating system could be

written in C, and by 1978 the

whole environment had been

successfully ported to several

machines of different types. [Eric

Raymond]

• If you have a procedure with 10

parameters, you probably

missed some. [Perlis]

• It goes against the grain of

modern education to teach

students to program. What fun

is there to making plans,

acquiring discipline, organizing

thoughts, devoting attention to

detail, and learning to be self

critical. [Perlis]

• It is easier to change the

specification to fit the program

than vice versa. [Perlis]

• There are two ways to write

error-free programs; only the

third one works. [Perlis]
CSE401 Au08 3

Context-free Grammars (CFGs)

• Compromise between

– Regular expressions and their lack ofrecursive

structure

– General grammars, unneeded power,

undecidable

• Context-free grammars

+ Powerful enough to describe nesting, recursion

+ Easy to parse; generally efficient

– Cannot capture semantics, as in, “variable must

be declared,” requiring later semantic pass

– Can be ambiguous

CSE401 Au08 4

9/29/2008

2

Terminology

• Terminals – alphabet of language defined by CFG

• Nonterminals – symbols defined in terms of terminals and

nonterminals

• Productions – rules for how a nonterminal (lefthand side, lhs) is

defined in terms of a (possibly empty) sequence of terminals

and nonterminals

– Multiple alternative productions allowed for a nonterminal

• Start symbol – root of the defining language

Program ::= Stmt

Stmt ::= if (Expr) then Stmt else Stmt

Stmt ::= while (Expr) do Stmt

CSE401 Au08 5

Derivations and Parse Trees

• Derivation: a sequence of expansion steps,

beginning with a start symbol and leading to a

sequence of terminals

• Parsing: inverse of derivation

– Given a sequence of terminals (i.e., tokens)

recover the nonterminals representing structure

• Can represent a derivation as a parse tree, that is,

the concrete syntax tree

CSE401 Au08 6

Example Grammar

E ::= E op E | - E | (E) | id

op ::= + | - | * | /

a * (b + - c)

CSE401 Au08 7

Ambiguity

• Some grammars are ambiguous: multiple distinct parse trees for

the same terminal string

– The “hi2bob” lexing example was essentially the same

problem

• Since the structure of the parse tree captures much of the

meaning of the program, ambiguity implies multiple possible

meanings for the same program

• This isn’t good for programming languages: if the programmer

wrote an ambiguous program, the decision of the compiler writer

would define the semantics of the program

• “The good news about computers is that they do what you tell

them to do. The bad news is that they do what you tell them to

do.” [Ted Nelson]

CSE401 Au08 8

9/29/2008

3

Famous Ambiguity: “Dangling Else”

Stmt ::= ... |

if (Expr) Stmt |

if (Expr) Stmt else Stmt

if (e1) if (e2) s1 else s2 : if (e1) if (e2) s1 else s2

CSE401 Au08 9

Resolving Ambiguity: first two options

• Option 1: a meta-rule such as “else associates with closest

previous if”

– works, keeps original grammar intact

– ad hoc and informal

• Option 2: rewrite the grammar to avoid ambiguity

– formal, no additional rules beyond syntax

– sometimes obscures original grammar

Stmt ::= MatchedStmt | UnmatchedStmt

MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt

UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

CSE401 Au08 10

Resolving Ambiguity Example

Stmt ::= MatchedStmt | UnmatchedStmt

MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt

UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

if (e1) if (e2) s1 else s2

CSE401 Au08 11

Resolving Ambiguity: third option

• Redesign the language to remove the ambiguity

– formal, clear, elegant

– allows sequence of Stmts in then and else
branches, no braces are needed

– extra end required for every if

Stmt ::= ... |

if Expr then Stmt end |

if Expr then Stmt else Stmt end

CSE401 Au08 12

9/29/2008

4

Expression example: reprise

E ::= E Op E | - E | (E) | id

Op ::= + | - | * | /

a + b * c : a + b * c

CSE401 Au08 13

Resolving Ambiguity (Option 1)

• Add some meta-rules, e.g. precedence and

associativity rules

Example:
E ::= E Op E | - E | E ++

| (E) | id

Op::= + | - | * | / | %

| ** | == | < | &&

| ||

Operator Preced Assoc

++ [postfix] Highest Left

- [prefix] Right

** Right

*, /, % Left

+, - Left

==, < None

&& Left

|| Lowest Left
CSE401 Au08 14

Removing Ambiguity (Option 2)

• Modify the grammar to explicitly resolve the

ambiguity

– create a nonterminal for each precedence level

– expr is lowest precedence nonterminal

• each nonterminal can be rewritten with higher

precedence operator, highest precedence

operator includes atomic expressions

– at each precedence level, use

• left recursion for left-associative operators

• right recursion for right-associative operators

• no recursion for non-associative operators

CSE401 Au08 15

Redone Example

E ::= E0

E0 ::= E0 || E1 | E1 left associative

E1 ::= E1 && E2 | E2 left associative

E2 ::= E3 (== | <) E3 | E3 non associative

E3 ::= E3 (+ | -) E4 | E4 left associative

E4 ::= E4 (* | / | %) E5 | E5 left associative

E5 ::= E6 ** E5 | E6 right associative

E6 ::= - E6 | E7 right associative

E7 ::= E7 ++ | E8 left associative

E8 ::= id | (E)

CSE401 Au08 16

9/29/2008

5

Designing A Grammar

• Accurate

• Unambiguous

• Formal

• Readable, Clear

• Parsable by a particular algorithm

– Top down parser ==> LL(k) Grammar

– Bottom up Parser ==> LR(k) Grammar

• Design to implementation relatively straightforward

– By hand

– By automatic tools

CSE401 Au08 17

Brainstorm: how to parse?

CSE401 Au08 18

