
CSE 401 – CompilersCSE 401 Compilers

Overview and Administrivia
Hal PerkinsHal Perkins
Winter 2009

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-1

Credits

� Some direct ancestors of this quarter:
� UW CSE 401 (Chambers Snyder Notkin)� UW CSE 401 (Chambers, Snyder, Notkin…)
� UW CSE PMP 582/501 (Perkins)
� Cornell CS 412-3 (Teitelbaum Perkins)� Cornell CS 412-3 (Teitelbaum, Perkins)
� Rice CS 412 (Cooper, Kennedy, Torczon)

Many books (Appel; Cooper/Torczon; Aho� Many books (Appel; Cooper/Torczon; Aho,
[Lam,] Sethi, Ullman [Dragon Book],
Muchnick, …)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-2

Muchnick, …)

Agenda

� Introductions
� What’s a compiler?� What s a compiler?
� Administrivia

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-3

CSE 401 Personnel

� Instructor: Hal Perkins
� CSE 548; perkins [at] cs; p []
� Office hours: Mon/Tue 2-3 pm in CSE 006

+ dropins, etc.
� TA: Laura Marshall

� lmarsh16 [at] cs
� Office hours: tba

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-4

And the point is…
� Execute this!

int nPos = 0;;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

� How? – all the computer knows about is
1’s and 0’s

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-5

1 s and 0 s

Interpreters & Compilers

� Interpreter
� A program that reads a source program� A program that reads a source program

and produces the results of executing that
program

� Compiler
� A program that translates a program from� A program that translates a program from

one language (the source) to another (the
target)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-6

Common Issues

� Compilers and interpreters both must
read the input – a stream of charactersread the input a stream of characters
– and “understand” it: analysis

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-7

Interpreter
� Interpreter

� Execution engine
Program execution interleaved with analysis� Program execution interleaved with analysis

running = true;
while (running) {

analyze next statement;analyze next statement;
execute that statement;

}
� Usually requires repeated analysis of statements� Usually requires repeated analysis of statements

(particularly in loops, functions)
� But: immediate execution, good debugging &

interaction, etc.interaction, etc.

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-8

Compiler

� Read and analyze entire program
� Translate to semantically equivalent� Translate to semantically equivalent

program in another language
Presumably easier to execute or more� Presumably easier to execute or more
efficient

Offline process� Offline process
� Tradeoff: compile-time (preprocessing)

overhead vs execution performanceoverhead vs execution performance

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-9

Typical Implementations

� Compilers
� FORTRAN, C, C++, Java, COBOL, (La)TeX, , , , , , () ,

SQL (databases), VHDL, etc., etc.
� Particularly appropriate if significant

ti i ti t d/ d doptimization wanted/needed

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-10

Typical Implementations
� Interpreters

� PERL, Python, Ruby, awk, sed, shells
(b h) S h /Li /ML (lth h th(bash), Scheme/Lisp/ML (although these
are often hybrids), postscript/pdf, Java VM,
machine simulators (SPIM)

� Can be very efficient if interpreter
overhead is low relative to execution cost
of individual statementsof individual statements
� But even if not (SPIM, Java), flexibility,

immediacy, or portability may make it
worthwhile

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-11

worthwhile

Hybrid approaches
� Best-known example: Java

� Compile Java source to byte codes – Java Virtual
M hi (JVM) l (l fil)Machine (JVM) language (.class files)

� Execution
� Interpret byte codes directly, or
� Compile some or all byte codes to native code

� Just-In-Time compiler (JIT) – detect hot spots & compile
on the fly to native code – standard these days

� Variation: .NET
� Compilers generate MSIL

All IL compiled to native code before execution

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-12

� All IL compiled to native code before execution

Why Study Compilers? (1)

� Become a better programmer(!)
� Insight into interaction between languages� Insight into interaction between languages,

compilers, and hardware
� Understanding of implementationUnderstanding of implementation

techniques
� What is all that stuff in the debugger gg

anyway?
� Better intuition about what your code doesy

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-13

Why Study Compilers? (2)
� Compiler techniques are everywhere

� Parsing (“little” languages, interpreters, XML,
web serializing data for transmission)web, serializing data for transmission)

� Software engineering tools
� Database engines, query languagesg , q y g g
� AI, etc.: domain-specific languages
� Text processing

Tex/LaTex > dvi > Postscript > pdf� Tex/LaTex -> dvi -> Postscript -> pdf
� Hardware: VHDL; model-checking tools
� Mathematics (Mathematica, Matlab)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-14

Why Study Compilers? (3)

� Fascinating blend of theory and
engineeringengineering
� Direct applications of theory to practice

� Parsing, scanning, static analysisParsing, scanning, static analysis

� Some very difficult problems (NP-hard or
worse))
� Resource allocation, “optimization”, etc.
� Need to come up with good-enough

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-15

approximations/heuristics

Why Study Compilers? (4)
� Ideas from many parts of CSE

� AI: Greedy algorithms, heuristic search
� Algorithms: graph algorithms, dynamic

programming, approximation algorithms
� Theory: Grammars, DFAs and PDAs, patternTheory: Grammars, DFAs and PDAs, pattern

matching, fixed-point algorithms
� Systems: Allocation & naming, synchronization,

localitylocality
� Architecture: pipelines, instruction set use,

memory hierarchy management, locality

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-16

Why Study Compilers? (5)

� You might even write a compiler some
day!day!
� You will write parsers and interpreters for

little ad-hoc languages, if not bigger thingsg g , gg g

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-17

Structure of a Compiler

� First approximation
� Front end: analysis� Front end: analysis

� Read source program and understand its
structure and meaning

� Back end: synthesis
� Generate equivalent target language program

Source TargetFront End Back End

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-18

Implications

� Must recognize legal programs (& complain
about illegal ones)

� Must generate correct code
� Must manage storage of all variables/datag g /
� Must agree with OS & linker on target format

Source TargetFront End Back End

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-19

More Implications

� Need some sort of Intermediate
Representation(s) (IR)

� Front end maps source into IR
� Back end maps IR to target machine codep g
� Often multiple IRs – higher level at first,

lower level in later phases

Source TargetFront End Back End

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-20

Scanner Parsersource tokens IR

Front End
Scanner Parser

� Split into two parts
� Scanner: Responsible for converting character

stream to token stream
� Also: strips out white space, comments

Parser: Reads token stream; generates IR� Parser: Reads token stream; generates IR

� Both of these can be generated automatically
� Source language specified by a formal grammar� Source language specified by a formal grammar
� Tools read the grammar and generate scanner &

parser (either table-driven or hard-coded)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-21

Tokens

� Token stream: Each significant lexical
chunk of the program is represented bychunk of the program is represented by
a token
� Operators & Punctuation: {}[]!+-=*;:� Operators & Punctuation: {}[]!+ ;: …
� Keywords: if while return goto
� Identifiers: id & actual name� Identifiers: id & actual name
� Constants: kind & value; int, floating-point

character string

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-22

character, string, …

Scanner Example
� Input text

// this statement does very little
if (x >= y) y = 42;if (x >= y) y = 42;

� Token Stream
IF LPAREN ID(x) GEQ ID(y)IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

� Notes: tokens are atomic items, not character
strings; comments & whitespace are not tokens
(in most languages – counterexample: Python)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-23

(g g p y)

Parser Output (IR)

� Many different forms
� Engineering tradeoffs have changed over� Engineering tradeoffs have changed over

time (e.g., memory is (almost) free these days)

� Common output from a parser is an� Common output from a parser is an
abstract syntax tree
� Essential meaning of the program without� Essential meaning of the program without

the syntactic noise

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-24

Parser Example

� Token Stream Input � Abstract Syntax Tree
IF LPAREN ID(x) ifStmtIF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

ifStmt

>= assign
ID(y) BECOMES

INT(42) SCOLON ID(x) ID(y) ID(y) INT(42)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-25

Static Semantic Analysis
� During or (more common) after parsing

� Type checking
Ch k l i t lik� Check language requirements like proper
declarations, etc.

� Preliminary resource allocationy
� Collect other information needed by back end

analysis and code generation
� Key data structure: Symbol Table� Key data structure: Symbol Table

� Maps names -> meaning/types/details
� Often one per method/class/block/scope

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-26

p / / / p

Back End

� Responsibilities
� Translate IR into target machine codeg
� Should produce “good” code

� “good” = fast, compact, low power
ti (i k)consumption (pick some)

� Should use machine resources effectively
� Registers� Registers
� Instructions
� Memory hierarchy

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-27

Back End Structure

� Typically split into two major parts
� “Optimization” – code improvementsp p
� Code generation – usually two phases

� Intermediate (lower-level) code generation
� Typically source-language and target-machine

independent
� Usually precedes optimization

f� Target Code Generation (machine specific)
� Instruction selection & scheduling
� Register allocation

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-28

Example: source
Sample (extended) MiniJava program: Factorial.java
// Computes 10! and prints it out
class Factorial {

public static void main(String[] a) { p (g[]) {
System.out.println(

new Fac().ComputeFac(10));
}

} }
class Fac {

// the recursive helper function
public int ComputeFac(int num) {

int numAux; ;
if (num < 1)

numAux = 1;
else numAux = num * this.ComputeFac(num-1);
return numAux;

}
}

CSE401 Au08 29

Example: intermediate representation

Int Fac.ComputeFac(*? this, int num) {
int t1, numAux, t8, t3, t7, t2, t6, t0;
t0 := 1;
t1 := num < t0;t1 := num < t0;
ifnonzero t1 goto L0;
t2 := 1;
t3 := num - t2;
t6 := Fac ComputeFac(this t3);t6 := Fac.ComputeFac(this, t3);
t7 := num * t6;
numAux := t7;
goto L2;

label L0label L0;
t8 := 1;
numAux := t8

label L2;
t Areturn numAux

}

CSE401 Au08 30

The Result

� Input
if (x >= y)

� Output

y = 42; mov eax,[ebp+16]
cmp eax,[ebp-8]
jl L17
mov [ebp-8],42

ifStmt

>= assign
L17:

ID(x) ID(y) ID(y) INT(42)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-31

Some History (1)

� 1950’s. Existence proof
� FORTRAN I (1954) – competitive with () p

hand-optimized code
� 1960’s

� New languages: ALGOL, LISP, COBOL,
SIMULA
F l t ti f t BNF� Formal notations for syntax, esp. BNF

� Fundamental implementation techniques
Stack frames recursive procedures etc

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-32

� Stack frames, recursive procedures, etc.

Some History (2)

� 1970’s
� Syntax: formal methods for producing y p g

compiler front-ends; many theorems
� Late 1970’s, 1980’s

� New languages (functional; Smalltalk &
object-oriented)
N hit t (RISC hi ll l� New architectures (RISC machines, parallel
machines, memory hierarchy issues)

� More attention to back-end issues

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-33

� More attention to back-end issues

Some History (3)
� 1990s and beyond

� Compilation techniques appearing in many new
placesplaces
� Just-in-time compilers (JITs)
� Software analysis, verification, security

� Phased compilation – blurring the lines between� Phased compilation blurring the lines between
“compile time” and “runtime”
� Using machine learning techniques for optimizations(!)

� Compiler technology critical to effective use of� Compiler technology critical to effective use of
new hardware (RISC, Itanium, complex memory
heirarchies)

� The new 800 lb gorilla - multicoreThe new 800 lb gorilla multicore

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-34

Compiling (or related) Turing
Awards
� 1966 Alan Perlis
� 1972 Edsger Dijkstra

� 1984 Niklaus Wirth
� 1987 John Cocke

� 1976 Michael Rabin and
Dana Scott
1977 John Backus

� 2001 Ole-Johan Dahl
and Kristen Nygaard
2003 Alan Kay� 1977 John Backus

� 1978 Bob Floyd
� 1979 Bob Iverson

� 2003 Alan Kay
� 2005 Peter Naur
� 2006 Fran Allen� 1979 Bob Iverson

� 1980 Tony Hoare
� 2006 Fran Allen

CSE401 Au08 35

CSE 401 Administrivia

� Lectures: MWF 12:30, GUG 218
� Office Hours� Office Hours

� Perkins: Mon/Tue 2-3, CSE006 + dropins
Marshall: tba� Marshall: tba

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-36

Communications
� Course web site
� Discussion board

� Link on course web
� Use for anything relevant to the course
� Can configure to have postings sent via email� Can configure to have postings sent via email

� Mailing list
� You are automatically subscribed if you are y y

enrolled
� Will keep this fairly low-volume; limited to

things that everyone needs to readthings that everyone needs to read

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-37

Prerequisites

� CSE 326: Data structures & algorithms
� CSE 322: Formal languages & automata� CSE 322: Formal languages & automata
� CSE 378: Machine organization

ti l l bl l l i� particularly assembly-level programming
for some machine (not necessarily x86)

CSE 341 P i L� CSE 341: Programming Languages

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-38

CSE 401 Course Project

� Best way to learn about compilers is to
build (at least parts of) one

� CSE 401 course project
� Start with MiniJava compiler in Java
� Add features like new types, arrays,

comments, etc.
� Completed in steps through the quarter� Completed in steps through the quarter
� Evaluation: correctness, clarity of design and

implementation, quality of test cases, etc.

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-39

Project Groups

� You are encouraged to work in pairs
� Pair programming strongly encouraged� Pair programming strongly encouraged

� Space for group SVN repositories &
other shared files will be providedother shared files will be provided

� Pick partners by end of the week &
d il t i t t ith “401send email to instructor with “401

partner” in the subject

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-40

Books
� Three good books:

� Cooper & Torczon, Engineering a Compiler
Appel Modern Compiler Implementation in Java� Appel, Modern Compiler Implementation in Java,
2nd ed.

� Aho, Lam, Sethi, Ullman, “Dragon Book”, 2nd ed
(but 1st ed is also fine)(but 1st ed is also fine)

� Cooper/Torczon is the “official” text – seems
like best match to the course

f� Original minijava project taken from Appel
� If we put these on reserve in the engineering

library, would anyone notice?library, would anyone notice?

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-41

Requirements & Grading

� Roughly
� 40% project
� 15% individual written homework
� 15% midterm exam (date tba)
� 25% final exam
� 5% other

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-42

Academic Integrity

� We want a cooperative group working
together to do great stuff!together to do great stuff!

� But: you must never misrepresent work
done by someone else as your owndone by someone else as your own,
without proper credit
Know the rules ask if in doubt or if� Know the rules – ask if in doubt or if
tempted

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-43

Any questions?

� Your job is to ask questions to be sure
you understand what’s happening andyou understand what s happening and
to slow me down
� Otherwise, I’ll barrel on ahead ☺� Otherwise, I ll barrel on ahead ☺

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-44

Coming Attractions

� Quick review of formal grammars
� Lexical analysis – scanning� Lexical analysis – scanning

� Background for first part of the project

F ll d b i� Followed by parsing …

� Start reading: ch. 1, 2.1-2.4

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-45

