
CSE 401 – CompilersCSE 401 Compilers

Overview and Administrivia
Hal PerkinsHal Perkins
Winter 2009

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-1

Credits

Some direct ancestors of this quarter:
UW CSE 401 (Chambers Snyder Notkin)UW CSE 401 (Chambers, Snyder, Notkin…)
UW CSE PMP 582/501 (Perkins)
Cornell CS 412-3 (Teitelbaum Perkins)Cornell CS 412-3 (Teitelbaum, Perkins)
Rice CS 412 (Cooper, Kennedy, Torczon)
Many books (Appel; Cooper/Torczon; AhoMany books (Appel; Cooper/Torczon; Aho,
[Lam,] Sethi, Ullman [Dragon Book],
Muchnick, …)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-2

Muchnick, …)

Agenda

Introductions
What’s a compiler?What s a compiler?
Administrivia

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-3

CSE 401 Personnel

Instructor: Hal Perkins
CSE 548; perkins [at] cs; p []
Office hours: Mon/Tue 2-3 pm in CSE 006
+ dropins, etc.

TA: Laura Marshall
lmarsh16 [at] cs
Office hours: tba

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-4

And the point is…
Execute this!

int nPos = 0;;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

How? – all the computer knows about is
1’s and 0’s

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-5

1 s and 0 s

Interpreters & Compilers

Interpreter
A program that reads a source programA program that reads a source program
and produces the results of executing that
program

Compiler
A program that translates a program fromA program that translates a program from
one language (the source) to another (the
target)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-6

Common Issues

Compilers and interpreters both must
read the input – a stream of charactersread the input a stream of characters
– and “understand” it: analysis

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-7

Interpreter
Interpreter

Execution engine
Program execution interleaved with analysisProgram execution interleaved with analysis

running = true;
while (running) {

analyze next statement;analyze next statement;
execute that statement;

}
Usually requires repeated analysis of statementsUsually requires repeated analysis of statements
(particularly in loops, functions)
But: immediate execution, good debugging &
interaction, etc.interaction, etc.

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-8

Compiler

Read and analyze entire program
Translate to semantically equivalentTranslate to semantically equivalent
program in another language

Presumably easier to execute or morePresumably easier to execute or more
efficient

Offline processOffline process
Tradeoff: compile-time (preprocessing)
overhead vs execution performanceoverhead vs execution performance

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-9

Typical Implementations

Compilers
FORTRAN, C, C++, Java, COBOL, (La)TeX, , , , , , () ,
SQL (databases), VHDL, etc., etc.
Particularly appropriate if significant

ti i ti t d/ d doptimization wanted/needed

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-10

Typical Implementations
Interpreters

PERL, Python, Ruby, awk, sed, shells
(b h) S h /Li /ML (lth h th(bash), Scheme/Lisp/ML (although these
are often hybrids), postscript/pdf, Java VM,
machine simulators (SPIM)
Can be very efficient if interpreter
overhead is low relative to execution cost
of individual statementsof individual statements

But even if not (SPIM, Java), flexibility,
immediacy, or portability may make it
worthwhile

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-11

worthwhile

Hybrid approaches
Best-known example: Java

Compile Java source to byte codes – Java Virtual
M hi (JVM) l (l fil)Machine (JVM) language (.class files)
Execution

Interpret byte codes directly, or
Compile some or all byte codes to native code

Just-In-Time compiler (JIT) – detect hot spots & compile
on the fly to native code – standard these days

Variation: .NET
Compilers generate MSIL
All IL compiled to native code before execution

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-12

All IL compiled to native code before execution

Why Study Compilers? (1)

Become a better programmer(!)
Insight into interaction between languagesInsight into interaction between languages,
compilers, and hardware
Understanding of implementationUnderstanding of implementation
techniques
What is all that stuff in the debugger gg
anyway?
Better intuition about what your code doesy

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-13

Why Study Compilers? (2)
Compiler techniques are everywhere

Parsing (“little” languages, interpreters, XML,
web serializing data for transmission)web, serializing data for transmission)
Software engineering tools
Database engines, query languagesg , q y g g
AI, etc.: domain-specific languages
Text processing

Tex/LaTex > dvi > Postscript > pdfTex/LaTex -> dvi -> Postscript -> pdf
Hardware: VHDL; model-checking tools
Mathematics (Mathematica, Matlab)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-14

Why Study Compilers? (3)

Fascinating blend of theory and
engineeringengineering

Direct applications of theory to practice
Parsing, scanning, static analysisParsing, scanning, static analysis

Some very difficult problems (NP-hard or
worse))

Resource allocation, “optimization”, etc.
Need to come up with good-enough

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-15

approximations/heuristics

Why Study Compilers? (4)
Ideas from many parts of CSE

AI: Greedy algorithms, heuristic search
Algorithms: graph algorithms, dynamic
programming, approximation algorithms
Theory: Grammars, DFAs and PDAs, patternTheory: Grammars, DFAs and PDAs, pattern
matching, fixed-point algorithms
Systems: Allocation & naming, synchronization,
localitylocality
Architecture: pipelines, instruction set use,
memory hierarchy management, locality

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-16

Why Study Compilers? (5)

You might even write a compiler some
day!day!

You will write parsers and interpreters for
little ad-hoc languages, if not bigger thingsg g , gg g

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-17

Structure of a Compiler

First approximation
Front end: analysisFront end: analysis

Read source program and understand its
structure and meaning

Back end: synthesis
Generate equivalent target language program

Source TargetFront End Back End

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-18

Implications

Must recognize legal programs (& complain
about illegal ones)
Must generate correct code
Must manage storage of all variables/datag g /
Must agree with OS & linker on target format

Source TargetFront End Back End

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-19

More Implications

Need some sort of Intermediate
Representation(s) (IR)
Front end maps source into IR
Back end maps IR to target machine codep g
Often multiple IRs – higher level at first,
lower level in later phases

Source TargetFront End Back End

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-20

Scanner Parsersource tokens IR

Front End
Scanner Parser

Split into two parts
Scanner: Responsible for converting character
stream to token stream

Also: strips out white space, comments

Parser: Reads token stream; generates IRParser: Reads token stream; generates IR

Both of these can be generated automatically
Source language specified by a formal grammarSource language specified by a formal grammar
Tools read the grammar and generate scanner &
parser (either table-driven or hard-coded)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-21

Tokens

Token stream: Each significant lexical
chunk of the program is represented bychunk of the program is represented by
a token

Operators & Punctuation: {}[]!+-=*;:Operators & Punctuation: {}[]!+ ;: …
Keywords: if while return goto
Identifiers: id & actual nameIdentifiers: id & actual name
Constants: kind & value; int, floating-point
character string

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-22

character, string, …

Scanner Example
Input text

// this statement does very little
if (x >= y) y = 42;if (x >= y) y = 42;

Token Stream
IF LPAREN ID(x) GEQ ID(y)IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Notes: tokens are atomic items, not character
strings; comments & whitespace are not tokens
(in most languages – counterexample: Python)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-23

(g g p y)

Parser Output (IR)

Many different forms
Engineering tradeoffs have changed overEngineering tradeoffs have changed over
time (e.g., memory is (almost) free these days)

Common output from a parser is anCommon output from a parser is an
abstract syntax tree

Essential meaning of the program withoutEssential meaning of the program without
the syntactic noise

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-24

Parser Example

Token Stream Input Abstract Syntax Tree
IF LPAREN ID(x) ifStmtIF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

ifStmt

>= assign
ID(y) BECOMES

INT(42) SCOLON ID(x) ID(y) ID(y) INT(42)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-25

Static Semantic Analysis
During or (more common) after parsing

Type checking
Ch k l i t likCheck language requirements like proper
declarations, etc.
Preliminary resource allocationy
Collect other information needed by back end
analysis and code generation

Key data structure: Symbol TableKey data structure: Symbol Table
Maps names -> meaning/types/details
Often one per method/class/block/scope

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-26

p / / / p

Back End

Responsibilities
Translate IR into target machine codeg
Should produce “good” code

“good” = fast, compact, low power
ti (i k)consumption (pick some)

Should use machine resources effectively
RegistersRegisters
Instructions
Memory hierarchy

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-27

Back End Structure

Typically split into two major parts
“Optimization” – code improvementsp p
Code generation – usually two phases

Intermediate (lower-level) code generation
Typically source-language and target-machine
independent
Usually precedes optimization

fTarget Code Generation (machine specific)
Instruction selection & scheduling
Register allocation

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-28

Example: source
Sample (extended) MiniJava program: Factorial.java
// Computes 10! and prints it out
class Factorial {

public static void main(String[] a) { p (g[]) {
System.out.println(

new Fac().ComputeFac(10));
}

} }
class Fac {

// the recursive helper function
public int ComputeFac(int num) {

int numAux; ;
if (num < 1)

numAux = 1;
else numAux = num * this.ComputeFac(num-1);
return numAux;

}
}

CSE401 Au08 29

Example: intermediate representation

Int Fac.ComputeFac(*? this, int num) {
int t1, numAux, t8, t3, t7, t2, t6, t0;
t0 := 1;
t1 := num < t0;t1 := num < t0;
ifnonzero t1 goto L0;
t2 := 1;
t3 := num - t2;
t6 := Fac ComputeFac(this t3);t6 := Fac.ComputeFac(this, t3);
t7 := num * t6;
numAux := t7;
goto L2;

label L0label L0;
t8 := 1;
numAux := t8

label L2;
t Areturn numAux

}

CSE401 Au08 30

The Result

Input
if (x >= y)

Output

y = 42; mov eax,[ebp+16]
cmp eax,[ebp-8]
jl L17
mov [ebp-8],42

ifStmt

>= assign
L17:

ID(x) ID(y) ID(y) INT(42)

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-31

Some History (1)

1950’s. Existence proof
FORTRAN I (1954) – competitive with () p
hand-optimized code

1960’s
New languages: ALGOL, LISP, COBOL,
SIMULA
F l t ti f t BNFFormal notations for syntax, esp. BNF
Fundamental implementation techniques

Stack frames recursive procedures etc

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-32

Stack frames, recursive procedures, etc.

Some History (2)

1970’s
Syntax: formal methods for producing y p g
compiler front-ends; many theorems

Late 1970’s, 1980’s
New languages (functional; Smalltalk &
object-oriented)
N hit t (RISC hi ll lNew architectures (RISC machines, parallel
machines, memory hierarchy issues)
More attention to back-end issues

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-33

More attention to back-end issues

Some History (3)
1990s and beyond

Compilation techniques appearing in many new
placesplaces

Just-in-time compilers (JITs)
Software analysis, verification, security

Phased compilation – blurring the lines betweenPhased compilation blurring the lines between
“compile time” and “runtime”

Using machine learning techniques for optimizations(!)
Compiler technology critical to effective use ofCompiler technology critical to effective use of
new hardware (RISC, Itanium, complex memory
heirarchies)
The new 800 lb gorilla - multicoreThe new 800 lb gorilla multicore

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-34

Compiling (or related) Turing
Awards

1966 Alan Perlis
1972 Edsger Dijkstra

1984 Niklaus Wirth
1987 John Cocke

1976 Michael Rabin and
Dana Scott
1977 John Backus

2001 Ole-Johan Dahl
and Kristen Nygaard
2003 Alan Kay1977 John Backus

1978 Bob Floyd
1979 Bob Iverson

2003 Alan Kay
2005 Peter Naur
2006 Fran Allen1979 Bob Iverson

1980 Tony Hoare
2006 Fran Allen

CSE401 Au08 35

CSE 401 Administrivia

Lectures: MWF 12:30, GUG 218
Office HoursOffice Hours

Perkins: Mon/Tue 2-3, CSE006 + dropins
Marshall: tbaMarshall: tba

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-36

Communications
Course web site
Discussion board

Link on course web
Use for anything relevant to the course
Can configure to have postings sent via emailCan configure to have postings sent via email

Mailing list
You are automatically subscribed if you are y y
enrolled
Will keep this fairly low-volume; limited to
things that everyone needs to readthings that everyone needs to read

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-37

Prerequisites

CSE 326: Data structures & algorithms
CSE 322: Formal languages & automataCSE 322: Formal languages & automata
CSE 378: Machine organization

ti l l bl l l iparticularly assembly-level programming
for some machine (not necessarily x86)

CSE 341 P i LCSE 341: Programming Languages

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-38

CSE 401 Course Project

Best way to learn about compilers is to
build (at least parts of) one
CSE 401 course project

Start with MiniJava compiler in Java
Add features like new types, arrays,
comments, etc.
Completed in steps through the quarterCompleted in steps through the quarter
Evaluation: correctness, clarity of design and
implementation, quality of test cases, etc.

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-39

Project Groups

You are encouraged to work in pairs
Pair programming strongly encouragedPair programming strongly encouraged

Space for group SVN repositories &
other shared files will be providedother shared files will be provided
Pick partners by end of the week &

d il t i t t ith “401send email to instructor with “401
partner” in the subject

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-40

Books
Three good books:

Cooper & Torczon, Engineering a Compiler
Appel Modern Compiler Implementation in JavaAppel, Modern Compiler Implementation in Java,
2nd ed.
Aho, Lam, Sethi, Ullman, “Dragon Book”, 2nd ed
(but 1st ed is also fine)(but 1st ed is also fine)

Cooper/Torczon is the “official” text – seems
like best match to the course

fOriginal minijava project taken from Appel
If we put these on reserve in the engineering
library, would anyone notice?library, would anyone notice?

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-41

Requirements & Grading

Roughly
40% project
15% individual written homework
15% midterm exam (date tba)
25% final exam
5% other

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-42

Academic Integrity

We want a cooperative group working
together to do great stuff!together to do great stuff!
But: you must never misrepresent work
done by someone else as your owndone by someone else as your own,
without proper credit
Know the rules ask if in doubt or ifKnow the rules – ask if in doubt or if
tempted

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-43

Any questions?

Your job is to ask questions to be sure
you understand what’s happening andyou understand what s happening and
to slow me down

Otherwise, I’ll barrel on ahead ☺Otherwise, I ll barrel on ahead ☺

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-44

Coming Attractions

Quick review of formal grammars
Lexical analysis – scanningLexical analysis – scanning

Background for first part of the project

F ll d b iFollowed by parsing …

Start reading: ch. 1, 2.1-2.4

1/4/2009 © 2002-09 Hal Perkins & UW CSE A-45

