

- Agenda for Today

- Parsing overview
- Context free grammars
- Ambiguous grammars
- Reading: Cooper \& Torczon 3.1-3.2

1/11/2009
© 2002-09 Hal Perkins \& UW CSE

Syntactic Analysis / Parsing

- Goal: Convert token stream to abstract syntax tree
- Abstract syntax tree (AST):
- Captures the structural features of the program
- Primary data structure for remainder of compilation
- Three Part Plan
- Study how context-free grammars specify syntax
- Study algorithms for parsing / building ASTs
- Study the miniJava Implementation

Context-free Grammars

- The syntax of most programming languages can be specified by a context-free grammar (CGF)
- Compromise between
- REs, can't nest or specify recursive structure
- General grammars, too powerful, undecidable
- Context-free grammars are a sweet spot
- Powerful enough to describe nesting, recursion
- Easy to parse; but also allow restrictions for speed
- Not perfect
- Cannot capture semantics, as in, "variable must be declared," requiring later semantic pass
- Can be ambiguous
- EBNF, Extended Backus Naur Form, is popular notation

Parsing

- Parsing: Given a grammar G and a sentence w in $L(G)$, traverse the derivation (parse tree) for w in some standard order and do something useful at each node
- The tree might not be produced explicitly, but the control flow of a parser corresponds to a traversal

Common Orderings

- Top-down
- Start with the root
- Traverse the parse tree depth-first, left-to-right (leftmost derivation)
- LL(k)
- Bottom-up
- Start at leaves and build up to the root - Effectively a rightmost derivation in reverse(!)
- LR(k) and subsets (LALR(k), SLR(k), etc.)

Context-Free Grammars

- Formally, a grammar G is a tuple $\langle N, \Sigma, P, S\rangle$ where
- N a finite set of non-terminal symbols
- Σ a finite set of terminal symbols
- P a finite set of productions
- A subset of $N \times(N \cup \Sigma)^{*}$
- S the start symbol, a distinguished element of N
- If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production

Standard Notations

- a, b, c elements of Σ
- W, x, y, z elements of Σ^{*}
- A, B, C elements of N
- X, Y, Z elements of $N \cup \Sigma$
- α, β, γ elements of $(N \cup \Sigma)^{*}$
- $A \rightarrow \alpha$ or $A::=\alpha$ if $\langle A, \alpha\rangle$ in P

Derivation Relations (1)

- $\alpha \mathrm{A} \gamma=>\alpha \beta \gamma$ iff $\mathrm{A}::=\beta$ in P - derives
- A = >* w if there is a chain of productions starting with A that generates w
- transitive closure

Derivation Relations

- w A $\gamma=>_{\text {lm }}$ w $\beta \gamma$ iff $\mathrm{A}::=\beta$ in P - derives leftmost
- $\alpha \mathrm{A} w=>_{r m} \alpha \beta w$ iff $A::=\beta$ in P - derives rightmost
- We will only be interested in leftmost and rightmost derivations - not random orderings

Reduced Grammars

- Grammar G is reduced iff for every production $\mathrm{A}::=\alpha$ in G there is a derivation

$$
S=>^{*} x A z=>x \alpha z=>^{*} x y z
$$

- i.e., no production is useless
- Convention: we will use only reduced grammars

1/11/2009 © 2002-09 Hal Perkins \& UW CSE

Ambiguity

- Grammar G is unambiguous iff every w in $L(G)$ has a unique leftmost (or rightmost) derivation
- Fact: unique leftmost or unique rightmost implies the other
- A grammar without this property is ambiguous
- Note that other grammars that generate the same language may be unambiguous
- We need unambiguous grammars for parsing

1/11/2009
© 2002-09 Hal Perkins \& UW CSE
C-17

Example: Ambiguous Grammar

 for Arithmetic Expressions$$
\text { expr }::=\text { expr }+ \text { expr } \mid \text { expr }- \text { expr }
$$

| expr* expr | expr / expr | int
int $::=0|1| 2|3| 4|5| 6|7| 8 \mid 9$

- Exercise: show that this is ambiguous
- How? Show two different leftmost or rightmost derivations for the same string
- Equivalently: show two different parse trees for the same string

1/11/2009
© 2002-09 Hal Perkins \& UW CSE

Parser Tools and Operators

- Most parser tools can cope with ambiguous grammars
- Makes life simpler if used with discipline
- Typically one can specify operator precedence \& associativity
- Allows simpler, ambiguous grammar with fewer nonterminals as basis for generated parser, without creating problems

Parser Tools and Ambiguous Grammars

- Possible rules for resolving other problems
- Earlier productions in the grammar preferred to later ones
- Longest match used if there is a choice
- Parser tools normally allow for this
- But be sure that what the tool does is really what you want

Coming Attractions

- Next topic: LR parsing
- Continue reading ch. 3

