
CSE 401 Wi09 D-1

CSE 401 – Compilers

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-1

LR Parsing
Hal Perkins
Winter 2009

Agenda

LR Parsing
Table-driven Parsers
Parser States

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-2

Parser States
Shift-Reduce and Reduce-Reduce
conflicts

LR(1) Parsing

We’ll look at LR(1) parsers
Left to right scan, Rightmost derivation, 1
symbol lookahead

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-3

y
Almost all practical programming
languages have an LR(1) grammar
LALR(1), SLR(1), etc. – subsets of LR(1)

LALR(1) can parse most real languages, is
more compact, and is used by YACC/Bison/
CUP/etc.

Bottom-Up Parsing

Idea: Read the input left to right
Whenever we’ve matched the right
hand side of a production reduce it to

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-4

hand side of a production, reduce it to
the appropriate non-terminal and add
that non-terminal to the parse tree
The upper edge of this partial parse
tree is known as the frontier

Example

Grammar

S ::= aAB e

Bottom-up Parse

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-5

S :: aAB e
A ::= Abc | b
B ::= d

a b b c d e

Details
The bottom-up parser reconstructs a reverse
rightmost derivation
Given the rightmost derivation
S β β β β β

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-6

S =>β1=>β2=>…=>βn-2=>βn-1=>βn = w
the parser will first discover βn-1=>βn , then
βn-2=>βn-1 , etc.
Parsing terminates when

β1 reduced to S (start symbol, success), or
No match can be found (syntax error)

CSE 401 Wi09 D-2

How Do We Parse with This?
Key: given what we’ve already seen and the
next input symbol, decide what to do.
Choices:

P f d ti

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-7

Perform a reduction
Look ahead further

Can reduce A=>β if both of these hold:
A=>β is a valid production
A=>β is a step in this rightmost derivation

This is known as a shift-reduce parser

Sentential Forms

If S =>* α, the string α is called a sentential
form of the of the grammar
In the derivation

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-8

S =>β1=>β2=>…=>βn-2=>βn-1=>βn = w
each of the βi are sentential forms
A sentential form in a rightmost derivation is
called a right-sentential form (similarly for
leftmost and left-sentential)

Handles

Informally, a substring of the tree
frontier that matches the right side of a
production

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-9

Even if A::=β is a production, β is a handle
only if it matches the frontier at a point
where A::=β was used in that derivation
β may appear in many other places in the
frontier without being a handle for that
particular production

Handles (cont.)

Formally, a handle of a right-sentential
form γ is a production A ::= β and a
position in γ where β may be replaced

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-10

position in γ where β may be replaced
by A to produce the previous right-
sentential form in the rightmost
derivation of γ

Handle Examples

In the derivation
S => aABe => aAde => aAbcde => abbcde

abbcde is a right sentential form whose

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-11

abbcde is a right sentential form whose
handle is A::=b at position 2
aAbcde is a right sentential form whose
handle is A::=Abc at position 4

Note: some books take the left of the match as
the position

Implementing Shift-Reduce
Parsers

Key Data structures
A stack holding the frontier of the tree
A string with the remaining input

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-12

A string with the remaining input

CSE 401 Wi09 D-3

Shift-Reduce Parser
Operations

Reduce – if the top of the stack is the
right side of a handle A::=β, pop the
right side β and push the left side A.

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-13

right side β and push the left side A.
Shift – push the next input symbol onto
the stack
Accept – announce success
Error – syntax error discovered

Shift-Reduce Example
Stack Input Action
$ abbcde$ shift

S ::= aABe
A ::= Abc | b
B ::= d

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-14

How Do We Automate This?

Def. Viable prefix – a prefix of a right-
sentential form that can appear on the stack
of the shift-reduce parser

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-15

Equivalent: a prefix of a right-sentential form that
does not continue past the rightmost handle of
that sentential form

Idea: Construct a DFA to recognize viable
prefixes given the stack and remaining input

Perform reductions when we recognize them

DFA for prefixes of

S ::= aABe
A ::= Abc | b
B ::= d

8 9
B

e

S ::= aABeaccept

$

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-16

1 2 3 6 7

4 5

start a

A ::= b B ::= d

b d

A b c
A ::= Abc

Trace

Stack Input
$ abbcde$

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

8 9

start a

b d

A b c A ::= Abc

B

e S ::= aABeaccept

$

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-17

4 5

A ::= b B ::= d

Observations

Way too much backtracking
We want the parser to run in time
proportional to the length of the input

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-18

p p g p

Where the heck did this DFA come from
anyway?

From the underlying grammar
We’ll defer construction details for now

CSE 401 Wi09 D-4

Avoiding DFA Rescanning

Observation: after a reduction, the contents
of the stack are the same as before except
for the new non-terminal on top

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-19

∴ Scanning the stack will take us through the
same transitions as before until the last one
∴ If we record state numbers on the stack, we
can go directly to the appropriate state when we
pop the right hand side of a production from the
stack

Stack

Change the stack to contain pairs of
states and symbols from the grammar
$s0 X1 s1 X2 s2 … Xn sn

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-20

0

State s0 represents the accept state
(Not always added – depends on particular presentation)

Observation: in an actual parser, only the state numbers need
to be pushed, since they implicitly contain the symbol
information, but for explanations, it’s clearer to use both.

Encoding the DFA in a Table

A shift-reduce parser’s DFA can be
encoded in two tables

One row for each state

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-21

One row for each state
action table encodes what to do given the
current state and the next input symbol
goto table encodes the transitions to take
after a reduction

Actions (1)

Given the current state and input
symbol, the main possible actions are

si – shift the input symbol and state i onto

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-22

si shift the input symbol and state i onto
the stack (i.e., shift and move to state i)
rj – reduce using grammar production j

The production number tells us how many
<symbol, state> pairs to pop off the stack

Actions (2)

Other possible action table entries
accept
blank – no transition – syntax error

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-23

blank no transition syntax error
A LR parser will detect an error as soon as
possible on a left-to-right scan
A real compiler needs to produce an error
message, recover, and continue parsing when
this happens

Goto

When a reduction is performed,
<symbol, state> pairs are popped from
the stack revealing a state uncovered s

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-24

the stack revealing a state uncovered_s
on the top of the stack
goto[uncovered_s , A] is the new state
to push on the stack when reducing
production A ::= β (after popping β and
finding state uncovered_s on top)

CSE 401 Wi09 D-5

Reminder: DFA for

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

8 9

start a A b c
A Ab

B

e
S ::= aABeaccept

$

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-25

1 2 3 6 7

4 5

start

A ::= b B ::= d

b d

A ::= Abc

LR Parse Table for

1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

State
action goto

a b c d e $ A B S

1 s2 acc g1

2 s4 g3

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-26

2 s4 g3

3 s6 s5 g8

4 r3 r3 r3 r3 r3 r3

5 r4 r4 r4 r4 r4 r4

6 s7

7 r2 r2 r2 r2 r2 r2

8 s9

9 r1 r1 r1 r1 r1 r1

LR Parsing Algorithm (1)
word = scanner.getToken();
while (true) {

s = top of stack;
if (action[s, word] = si) {

push word; push i (state);

} else if (action[s, word] = accept) {
return;

} else {
// no entry in action table
report syntax error;

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-27

push word; push i (state);
word = scanner.getToken();

} else if (action[s, word] = rj) {
pop 2 * length of right side of

production j (2*|β|);
uncovered_s = top of stack;
push left side A of production j ;
push state goto[uncovered_s, A];

}

report syntax error;
halt or attempt recovery;

}

Example
Stack Input
$ abbcde$

1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

S
action goto

a b c d e $ A B S

1 s2 ac g1

2 s4 g3

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-28

3 s6 s5 g8

4 r3 r3 r3 r3 r3 r3

5 r4 r4 r4 r4 r4 r4

6 s7

7 r2 r2 r2 r2 r2 r2

8 s9

9 r1 r1 r1 r1 r1 r1

LR States

Idea is that each state encodes
The set of all possible productions that we
could be looking at, given the current state

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-29

g , g
of the parse, and
Where we are in the right hand side of
each of those productions

Items

An item is a production with a dot in
the right hand side
Example: Items for production A ::= XY

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-30

p p
A ::= .XY
A ::= X.Y
A ::= XY.

Idea: The dot represents a position in
the production

CSE 401 Wi09 D-6

DFA for

S ::= aABe
A ::= Abc | b
B ::= d

S ::= .aABe accept$

a
B

S ::= aAB.e e S ::= aABe.
1

2 3

8 9

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-31

S ::= a.ABe
A ::= .Abc
A ::= .b

A ::= b.

a

b

S ::= aA.Be
A ::= A.bc
B ::= .d

A

B ::= d.

d

b
A ::= Ab.c

A ::= Abc.

c

2

4

3

5

6

7

Problems with Grammars

Grammars can cause problems when
constructing a LR parser

Shift-reduce conflicts

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-32

Shift reduce conflicts
Reduce-reduce conflicts

Shift-Reduce Conflicts

Situation: both a shift and a reduce are
possible at a given point in the parse
(equivalently: in a particular state of the

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-33

(equivalently: in a particular state of the
DFA)
Classic example: if-else statement

S ::= ifthen S | ifthen S else S

Parser States for

State 3 has a shift-
reduce conflict

Can shift past else

1. S ::= ifthen S
2. S ::= ifthen S else S

S ::= .ifthen S
S ::= .ifthen S else S

ifthen

1

S ::= ifthen .S
S f h S l S

2

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-34

into state 4 (s4)
Can reduce (r1)

S ::= ifthen S

(Note: other S ::= .ifthen
items not included in states
2-4 to save space)

S ::= ifthen .S else S
S

S ::= ifthen S .
S ::= ifthen S .else S

else

3

S ::= ifthen S else .S4

Solving Shift-Reduce Conflicts

Fix the grammar
Done in Java reference grammar, others

Use a parse tool with a “longest match”

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-35

Use a parse tool with a longest match
rule – i.e., if there is a conflict, choose
to shift instead of reduce

Does exactly what we want for if-else case
Guideline: a few shift-reduce conflicts are
fine, but be sure they do what you want

Reduce-Reduce Conflicts

Situation: two different reductions are
possible in a given state
Contrived example

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-36

Contrived example
S ::= A
S ::= B
A ::= x
B ::= x

CSE 401 Wi09 D-7

Parser States for

State 2 has a
reduce-reduce
conflict (r3, r4)

S ::= .A
S ::= .B
A ::= .x
B ::= .x

x

1

2

1. S ::= A
2. S ::= B
3. A ::= x
4. B ::= x

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-37

A ::= x.
B ::= x.

2

Handling Reduce-Reduce
Conflicts

These normally indicate a serious
problem with the grammar.
Fixes

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-38

Use a different kind of parser generator
that takes lookahead information into
account when constructing the states
(LR(1) instead of SLR(1) for example)

Most practical tools use this information
Fix the grammar

Another Reduce-Reduce
Conflict

Suppose the grammar separates
arithmetic and boolean expressions

expr ::= aexp | bexp

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-39

p p | p
aexp ::= aexp * aident | aident
bexp ::= bexp && bident | bident
aident ::= id
bident ::= id

This will create a reduce-reduce conflict

Covering Grammars

A solution is to merge aident and bident into
a single non-terminal (or use id in place of
aident and bident everywhere they appear)

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-40

This is a covering grammar
Includes some programs that are not generated
by the original grammar
Use the type checker or other static semantic
analysis to weed out illegal programs later

Coming Attractions

Constructing LR tables
We’ll present a simple version (SLR(0)) in
lecture, then talk about extending it to

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-41

, g
LR(1)

LL parsers and recursive descent
Continue reading ch. 3

