

LR State Machine

- Idea: Build a DFA that recognizes handles
- Language generated by a CFG is generally not regular, but
- Language of handles for a CFG is regular - So a DFA can be used to recognize handles
- Parser reduces when DFA accepts

Building the LR(0) States

- Example grammar
$S^{\prime}::=S \$$
$S::=(L)$
$S::=x$
$L::=S$
$L::=L, S$
- We add a production S^{\prime} with the original start symbol followed by end of file (\$)
- Question: What language does this grammar generate?

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=.(L) \\
& S::=. x \longrightarrow \text { start } \\
&
\end{aligned}
$$

- A state is just a set of items
- Start: an initial set of items
- Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

$S^{\prime}::=. S \$$
$S::=.(L) \times S \quad S::=\mathrm{x}$.
$S::=. \mathrm{x}$
- To shift past the x , add a new state with the appropriate item(s)
- In this case, a single item; the closure adds nothing
- This state will lead to a reduction since no further shift is possible

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=.(L) \\
& S::=. \mathrm{x}
\end{aligned} \quad S \quad S^{\prime}::=S . \$
$$

- Once we reduce S, we'll pop the rhs from the stack exposing the first state. Add a goto transition on S for this.

Basic Operations

- Closure (S)
- Adds all items implied by items already in S
- Goto (I, X)
- I is a set of items
- X is a grammar symbol (terminal or nonterminal)
- Goto moves the dot past the symbol X in all appropriate items in set I

1/16/2009
© 2002-09 Hal Perkins \& UW CSE

Closure Algorithm

- Closure (S) = repeat
for any item $[\mathrm{A}::=\alpha . X \beta]$ in S
for all productions $X::=\gamma$
add $[X::=, \gamma]$ to S
until S does not change
return S

1/16/2009
© 2002-09 Hal Perkins \& UW CSE

Goto Algorithm

- $\operatorname{Goto}(I, X)=$
set new to the empty set
for each item $[\mathrm{A}::=\alpha . X \beta]$ in I add $[\mathrm{A}::=\alpha X, \beta]$ to new
return Closure (new)
- This may create a new state, or may return an existing one

LR(0) Construction

- First, augment the grammar with an extra start production $S^{\prime}::=S \$$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to Closure ($\left[S^{\prime}::=. S \$\right]$)
- Initialize E to empty

LR(0) Construction Algorithm

repeat
for each state I in T
for each item $[A::=\alpha . X \beta]$ in I
Let new be Goto (I, X)
Add new to T if not present
Add $I \xrightarrow{X}$ new to E if not present
until E and T do not change in this iteration

- Footnote: For symbol \$, we don't compute goto(I, \$); instead, we make this an accept action.
- For each edge $I \xrightarrow{\times} J$
- if X is a terminal, put $s j$ in column X, row I of the action table (shift to state j)
- If X is a non-terminal, put $\mathrm{g} j$ in column X , row I of the goto table
\qquad
1/16/2009
© 2002-09 Hal Perkins \& UW CSE

Building the Parse Tables (2)

- For each state I containing an item [$\left.S^{\prime}::=S . \$\right]$, put accept in column \$ of row I
- Finally, for any state containing [$A::=\gamma$.] put action $r n$ in every column of row I in the table, where n is the production number

1/16/2009
© 2002-09 Hal Perkins \& UW CSE

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
- Easiest form is SLR - Simple LR
- So we need to be able to compute FOLLOW (A) - the set of symbols that can follow A in any possible derivation
- But to do this, we need to compute $\operatorname{FIRST}(\gamma)$ for strings γ that can follow A

1/16/2009
© 2002-09 Hal Perkins \& UW CSE

Calculating FIRST (γ)

- Sounds easy... If $\gamma=X Y Z$, then $\operatorname{FIRST}(\gamma)$ is $\operatorname{FIRST}(X)$, right?
- But what if we have the rule $X::=\varepsilon$? - In that case, $\operatorname{FIRST}(\gamma)$ includes anything that can follow an X-i.e. $\operatorname{FOLLOW}(X)$

FIRST, FOLLOW, and nullable

- nullable (X) is true if X can derive the empty string
- Given a string γ of terminals and nonterminals, $\operatorname{FIRST}(\gamma)$ is the set of terminals that can begin strings derived from γ.
- FOLLOW (X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

1/16/2009
© 2002-09 Hal Perkins \& UW CSE

Computing FIRST, FOLLOW, and nullable (1)

- Initialization
set FIRST and FOLLOW to be empty sets set nullable to false for all non-terminals set FIRST[a] to a for all terminal symbols a

Computing FIRST, FOLLOW, and nullable (2)
repeat
for each production $X:=Y_{1} Y_{2} \ldots Y_{\mathrm{k}}$
if $Y_{1} \ldots Y_{\mathrm{k}}$ are all nullable (or if $k=0$) set nullable $[X]=$ true
for each i from 1 to k and each j from $i+1$ to k
if $Y_{1} \ldots Y_{\mathrm{i}-1}$ are all nullable (or if $i=1$) add FIRST $\left[Y_{\mathrm{i}}\right]$ to FIRST[X]
if $Y_{\mathrm{i}+1} \ldots Y_{\mathrm{k}}$ are all nullable (or if $i=k$) add FOLLOW[X] to FOLLOW $\left[Y_{i}\right]$
if $Y_{\mathrm{i}+1} \ldots Y_{\mathrm{j}-1}$ are all nullable (or if $\mathrm{i}+1=\mathrm{j}$) add FIRST[Y_{j}] to FOLLOW $\left[Y_{\mathrm{i}}\right]$
Until FIRST, FOLLOW, and nullable do not change
1/16/2009 © 2002-09 Hal Perkins \& UW CSE E-28

SLR Construction

- This is identical to LR(0) - states, etc., except for the calculation of reduce actions
- Algorithm:

Initialize R to empty
for each state I in T
for each item [$A::=\alpha$.] in I for each terminal a in $\operatorname{FOLLOW}(A)$ add $(I, \mathrm{a}, A::=\alpha)$ to R - i.e., reduce α to A in state I only on lookahead a

1/16/2009
© 2002-09 Hal Perkins \& UW CSE
E-30

On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An $\operatorname{LR}(1)$ item $[A::=\alpha \cdot \beta, a]$ is
- A grammar production ($A::=\alpha \beta$)
- A right hand side position (the dot)
- A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from β a.
- Full construction: see the book

LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
- Example: these two would be merged

$$
\begin{aligned}
& {[A::=\mathrm{x} ., \mathrm{a}]} \\
& {[A::=\mathrm{x} ., \mathrm{b}]}
\end{aligned}
$$

LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than $\operatorname{LR}(1)$
- LALR(1) may have reduce conflicts where $L R(1)$ would not (but in practice this doesn't happen often)

