CSE 401 - Compilers

LR Parser Construction Hal Perkins
 Winter 2009

Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR

LR State Machine

- Idea: Build a DFA that recognizes handles
- Language generated by a CFG is generally not regular, but
- Language of handles for a CFG is regular
- So a DFA can be used to recognize handles
- Parser reduces when DFA accepts

Prefixes, Handles, \&c (review)

- If S is the start symbol of a grammar G,
- If $S=>^{*} \alpha$ then α is a sentential form of G
- γ is a viable prefix of G if there is some derivation $\mathrm{S}=>^{*}{ }_{\mathrm{rm}} \alpha A \mathrm{w}=>^{*}{ }_{\mathrm{rm}} \alpha \beta \mathrm{w}$ and γ is a prefix of $\alpha \beta$.
- The occurrence of β in $\alpha \beta \mathrm{w}$ is a handle of $\alpha \beta \mathrm{w}$
- An item is a marked production (a . at some position in the right hand side)
- [$A::=$. $X Y$]
[$A::=X . Y$]
[$A::=X Y$.]

Building the LR(0) States

- Example grammar

$$
\begin{aligned}
& S^{\prime}::=S \$ \\
& S::=(L) \\
& S::=x \\
& L::=S \\
& L::=L, S
\end{aligned}
$$

- We add a production S^{\prime} with the original start symbol followed by end of file (\$)
- Question: What language does this grammar generate?

Start of LR Parse

> 0. $S^{\prime}::=S \$$
> 1. $S::=(L)$
> 2. $S::=x$
> 3. $L::=S$
> 4. $L::=L, S$

- Initially
- Stack is empty
- Input is the right hand side of S^{\prime}, i.e., $S \$$
- Initial configuration is [$\left.S^{\prime}::=. S \$\right]$
- But, since position is just before S, we are also just before anything that can be derived from S

Initial state

0. $S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=\mathrm{x}$
3. $L::=S$
4. $L::=L, S$

- A state is just a set of items
- Start: an initial set of items
- Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

0. $S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=x$
3. $L::=S$
4. $L::=L, S$

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=.(L) \\
& S::=. \mathrm{x}
\end{aligned}
$$

- To shift past the x, add a new state with the appropriate item(s)
- In this case, a single item; the closure adds nothing
- This state will lead to a reduction since no further shift is possible

Shift Actions (2)

0. $S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=x$
3. $L::=S$
4. $L::=L, S$

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=.(L) \\
& S::=. \mathrm{x}
\end{aligned} \quad\left(\begin{array}{l}
S::=(. L) \\
L: \because=. L, S \\
L: \because=. S \\
S: \because=.(L) \\
S: \because=. \mathrm{x}
\end{array}\right.
$$

- If we shift past the (, we are at the beginning of L
- the closure adds all productions that start with L, which requires adding all productions starting with S

Goto Actions

0. $S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=\mathrm{x}$
3. $L::=S$
4. $L::=L, S$

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=.(L) \\
& S::=. \mathrm{x}
\end{aligned}
$$

- Once we reduce S, we'll pop the rhs from the stack exposing the first state. Add a goto transition on S for this.

Basic Operations

- Closure (S)
- Adds all items implied by items already in S
- Goto (I, X)
- I is a set of items
- X is a grammar symbol (terminal or nonterminal)
- Goto moves the dot past the symbol X in all appropriate items in set I

Closure Algorithm

- Closure (S) = repeat
for any item [A ::= $\quad . X \beta]$ in S
for all productions $X::=\gamma$
add $[X::=. \gamma]$ to S
until S does not change return S

Goto Algorithm

- $\operatorname{Goto}(I, X)=$
set new to the empty set for each item $[\mathrm{A}::=\alpha . X \beta]$ in I add $[\mathrm{A}::=\alpha X, \beta]$ to new return Closure (new)
- This may create a new state, or may return an existing one

LR(0) Construction

- First, augment the grammar with an extra start production $S^{\prime}::=S \$$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to Closure ([$\left.S^{\prime}::=. S \$\right]$)
- Initialize E to empty

LR(0) Construction Algorithm

repeat

for each state I in T
for each item $[A::=\alpha . X \beta]$ in I
Let new be Goto (I, X)
Add new to T if not present
Add $I \xrightarrow{X}$ new to E if not present
until E and T do not change in this iteration

- Footnote: For symbol \$, we don't compute goto ($I, \$$); instead, we make this an accept action.

LR(0) Reduce Actions

- Algorithm:

Initialize R to empty for each state I in T for each item $[A::=\alpha$.$] in I$ $\operatorname{add}(I, A::=\alpha)$ to R

Building the Parse Tables (1)

- For each edge $I \xrightarrow{x} J$
- if X is a terminal, put s j in column X, row I of the action table (shift to state j)
- If X is a non-terminal, put $\mathrm{g} j$ in column X , row I of the goto table

Building the Parse Tables (2)

- For each state I containing an item [$S^{\prime}::=S . \$$, put accept in column \$ of row I
- Finally, for any state containing [$A::=\gamma$.] put action $r n$ in every column of row I in the table, where n is the production number

0. $S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=\mathrm{x}$

Example: States for

3. $L::=S$
4. $L::=L, S$

0. $S^{\prime}::=S \$$
 1. $S::=(L)$
 2. $S::=\mathrm{x}$
 Example: Tables for
 3. $L::=S$
 4. $L::=L, S$

Where Do We Stand?

- We have built the $\operatorname{LR}(0)$ state machine and parser tables
- No lookahead yet
- Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

A Grammar that is not $\operatorname{LR}(0)$

- Build the state machine and parse tables for a simple expression grammar

$$
\begin{aligned}
& S::=E \$ \\
& E::=T+E \\
& E::=T \\
& T::=\mathrm{x}
\end{aligned}
$$

0. $S::=E \$$ 1. $E::=T+E$

LR(0) Parser for

2. $E::=T$
3. $T::=\mathrm{x}$

	x	+	S	E	T
1	s 5			g 2	G 3
2			acc		
3	r 2	$\mathrm{~s} 4, \mathrm{r} 2$	r 2		
4	s 5			g 6	G 3
5	r3	r 3	r 3		
6	r 1	r 1	r 1		

- State 3 is has two possible actions on +
- shift 4, or reduce 2
- \therefore Grammar is not LR(0)

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
- Easiest form is SLR - Simple LR
- So we need to be able to compute $\operatorname{FOLLOW}(A)$ - the set of symbols that can follow A in any possible derivation
- But to do this, we need to compute $\operatorname{FIRST}(\gamma)$ for strings γ that can follow A

Calculating FIRST(γ)

- Sounds easy... If $\gamma=X Y Z$, then $\operatorname{FIRST}(\gamma)$ is $\operatorname{FIRST}(X)$, right?
- But what if we have the rule $X::=\varepsilon$?
- In that case, $\operatorname{FIRST}(\gamma)$ includes anything that can follow an X - i.e. $\operatorname{FOLLOW}(X)$

FIRST, FOLLOW, and nullable

- nullable (X) is true if X can derive the empty string
- Given a string γ of terminals and nonterminals, $\operatorname{FIRST}(\gamma)$ is the set of terminals that can begin strings derived from γ.
- FOLLOW (X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable (1)

- Initialization
set FIRST and FOLLOW to be empty sets set nullable to false for all non-terminals set FIRST[a] to a for all terminal symbols a

Computing FIRST, FOLLOW, and nullable (2)

repeat
for each production $X:=Y_{1} Y_{2} \ldots Y_{\mathrm{k}}$
if $Y_{1} \ldots Y_{\mathrm{k}}$ are all nullable (or if $k=0$) set nullable[X] = true
for each i from 1 to k and each j from $i+1$ to k
if $Y_{1} \ldots Y_{\mathrm{i}-1}$ are all nullable (or if $i=1$) add FIRST[Y_{i}] to FIRST[X]
if $Y_{i+1} \ldots Y_{\mathrm{k}}$ are all nullable (or if $i=k$) add FOLLOW[X] to FOLLOW $\left[Y_{\mathrm{i}}\right]$
if $Y_{\mathrm{i}+1} \ldots Y_{\mathrm{j}-1}$ are all nullable (or if $\mathrm{i}+1=\mathrm{j}$) add FIRST $\left[Y_{\mathrm{j}}\right]$ to FOLLOW[$\left.Y_{\mathrm{i}}\right]$
Until FIRST, FOLLOW, and nullable do not change

Example

- Grammar

$$
\begin{aligned}
& Z::=\mathrm{d} \\
& Z::=X Y Z \\
& Y::=\varepsilon \\
& Y::=\mathrm{c} \\
& X::=Y \\
& X::=\mathrm{a}
\end{aligned}
$$

nullable
FIRST
FOLLOW

$$
\begin{aligned}
& X \\
& Y \\
& Y
\end{aligned}
$$

SLR Construction

- This is identical to LR(0) - states, etc., except for the calculation of reduce actions
- Algorithm:

Initialize R to empty
for each state I in T
for each item $[A::=\alpha$.] in I
for each terminal a in $\operatorname{FOLLOW}(A)$
$\operatorname{add}(I, \mathrm{a}, A::=\alpha)$ to R

- i.e., reduce α to A in state I only on lookahead a

0. $S::=E \$$
1. $\mathrm{E}::=\mathrm{T}+\mathrm{E}$

SLR Parser for

2. $E::=T$

On To LR(1)

- Many practical grammars are SLR
- $\operatorname{LR}(1)$ is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An $\operatorname{LR}(1)$ item $[A::=\alpha \cdot \beta, a]$ is
- A grammar production ($A::=\alpha \beta$)
- A right hand side position (the dot)
- A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from β a.
- Full construction: see the book

LR(1) Tradeoffs

- LR(1)
- Pro: extremely precise; largest set of grammars
- Con: potentially very large parse tables with many states

LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
- Example: these two would be merged

$$
\begin{aligned}
& {[A::=\mathrm{x} . \mathrm{b}]} \\
& {[A::=\mathrm{x} . \mathrm{b}]}
\end{aligned}
$$

LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
- LALR(1) may have reduce conflicts where $\operatorname{LR}(1)$ would not (but in practice this doesn't happen often)

Language Heirarchies

Coming Attractions

- LL(k) Parsing - Top-Down
- Recursive Descent Parsers
- What you can do if you need a parser in a hurry
- But first, the next part of the project: parsing and AST generation

