
CSE 401 – CompilersCSE 401 Compilers

LL and Recursive-Descent Parsing
Hal PerkinsHal Perkins
Winter 2009

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-1

Agenda

Top-Down Parsing
Predictive ParsersPredictive Parsers
LL(k) Grammars
Recursive Descent
Grammar Hacking

Left recursion removal
Factoring

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-2

g

Basic Parsing Strategies (1)

Bottom-up
Build up tree from leavesBuild up tree from leaves

Shift next input or reduce a handle
Accept when all input read and reduced to start p p
symbol of the grammar

LR(k) and subsets (SLR(k), LALR(k), …)

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-3

remaining input

Basic Parsing Strategies (2)

Top-Down
Begin at root with start symbol of grammar
Repeatedly pick a non-terminal and expand
Success when expanded tree matches input
LL(k)

A

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-4

Top-Down Parsing
Situation: have completed part of a derivation

S =>* wAα =>* wxy

Basic Step: Pick some production
A ::= β1 β2 … βn

that will properly expand Athat will properly expand A
to match the input

Want this to be
deterministic Adeterministic A

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-5

Predictive Parsing
If we are located at some non-terminal A,
and there are two or more possible
productionsproductions

A ::= α
A ::= β

k h h i bwe want to make the correct choice by
looking at just the next input symbol
If we can do this, we can build a predictiveIf we can do this, we can build a predictive
parser that can perform a top-down parse
without backtracking

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-6

Example
Programming language grammars are often
suitable for predictive parsing
Typical example

stmt ::= id = exp ; | return exp ;
| if (exp) stmt | while (exp) stmt| if (exp) stmt | while (exp) stmt

If the next part of the input begins with the
tokens

IF LPAREN ID(x) …

we should expand stmt to an if-statement

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-7

LL(k) Property

A grammar has the LL(1) property if,
for all non-terminals A, if productionsfor all non terminals A, if productions
A ::= α and A ::= β both appear in the
grammar, then it is the case thatgrammar, then it is the case that

FIRST(α) FIRST(β) = Ø
If a grammar has the LL(1) property

I

If a grammar has the LL(1) property,
we can build a predictive parser for it
that uses 1-symbol lookahead

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-8

that uses 1 symbol lookahead

LL(k) Parsers

An LL(k) parser
Scans the input Left to rightp g
Constructs a Leftmost derivation
Looking ahead at most k symbols

1-symbol lookahead is enough for
many practical programming language
grammars

LL(k) for k>1 is very rare in practice

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-9

Table-Driven LL(k) Parsers

As with LR(k), a table-driven parser can be
constructed from the grammar
Example

1. S ::= (S) S
2. S ::= [S] S
3. S ::= ε

Table
() [] $

S 1 3 2 3 3

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-10

S 1 3 2 3 3

LL vs LR (1)

Table-driven parsers for both LL and LR
can be automatically generated by toolsy g y
LL(1) has to make a decision based on
a single non-terminal and the next input g
symbol
LR(1) can base the decision on the
entire left context (i.e., contents of the
stack) as well as the next input symbol

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-11

LL vs LR (2)

∴ LR(1) is more powerful than LL(1)
Includes a larger set of grammarsIncludes a larger set of grammars

∴ (editorial opinion) If you’re going to
use a tool-generated parser might asuse a tool-generated parser, might as
well use LR

But there are some very good LL parserBut there are some very good LL parser
tools out there (ANTLR, JavaCC, …) that
might win for non-LLvsLR reasons

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-12

might win for non LLvsLR reasons

Recursive-Descent Parsers

An advantage of top-down parsing is
that it is easy to implement by handthat it is easy to implement by hand
Key idea: write a function (procedure,
method) corresponding to each non-method) corresponding to each non-
terminal in the grammar

Each of these functions is responsible forEach of these functions is responsible for
matching its non-terminal with the next
part of the input

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-13

part of the input

Example: Statements
Grammar

stmt ::= id = exp ;
| return exp ;

Method for this grammar rule
// parse stmt ::= id=exp; | …
void stmt() {| p ;

| if (exp) stmt
| while (exp) stmt

void stmt() {
switch(nextToken) {

RETURN: returnStmt(); break;
IF: ifStmt(); break;IF: ifStmt(); break;
WHILE: whileStmt(); break;
ID: assignStmt(); break;

}}
}

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-14

Example (cont)
// parse while (exp) stmt
void whileStmt() {

// skip “while (”
getNextToken();

// parse return exp ;
void returnStmt() {

// skip “return”
getNextToken();getNextToken();

getNextToken();

// parse condition
exp();

getNextToken();

// parse expression
exp();

exp();

// skip “)”
getNextToken();

// skip “;”
getNextToken();

}

// parse stmt
stmt();

}

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-15

Invariant for Functions

The parser functions need to agree on where
they are in the input
Useful invariant: When a parser function is
called, the current token (next unprocessed
piece of the input) is the token that begins
the expanded non-terminal being parsed

C ll h f ti i d it tCorollary: when a parser function is done, it must
have completely consumed input correspond to
that non-terminal

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-16

Possible Problems

Two common problems for recursive-
descent (and LL(1)) parsersdescent (and LL(1)) parsers

Left recursion (e.g., E ::= E + T | …)
Common prefixes on the right hand side ofCommon prefixes on the right hand side of
productions

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-17

Left Recursion Problem
Grammar rule

expr ::= expr + term
| t

Code
// parse expr ::= …

id () {| term void expr() {
expr();
if (current token isif (current token is

PLUS) {
getNextToken();
t ()

And the bug is????

term();
}

}

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-18

}

Left Recursion Problem

If we code up a left-recursive rule as-is,
we get an infinite recursionwe get an infinite recursion
Non-solution: replace with a right-
recursive rulerecursive rule

expr ::= term + expr | term
Why isn’t this the right thing to do?Why isn t this the right thing to do?

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-19

Left Recursion Solution
Rewrite using right recursion and a new non-
terminal
Original: expr ::= expr + term | term
New

t t ilexpr ::= term exprtail
exprtail ::= + term exprtail | ε

PropertiesProperties
No infinite recursion if coded up directly
Maintains left associatively (required)

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-20

Another Way to Look at This

Observe that
expr ::= expr + term | termp p |

generates the sequence
term + term + term + … + term

We can sugar the original rule to reflect
this

expr ::= term { + term }*
This leads directly to parser code

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-21

This leads directly to parser code

Code for Expressions (1)
// parse
// expr ::= term { + term }*
void expr() {

// parse
// term ::= factor { * factor }*
void term() {

term();
while (next symbol is PLUS) {

getNextToken();
term()

void term() {
factor();
while (next symbol is TIMES) {

getNextToken();term()
}

}

getNextToken();
factor()

}
}}

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-22

Code for Expressions (2)
// parse
// factor ::= int | id | (expr)
void factor() {

case ID:
process identifier;

switch(nextToken) {

INT

process identifier;
getNextToken();
break;

case LPAREN:case INT:
process int constant;
getNextToken();
break;

case LPAREN:
getNextToken();
expr();
getNextToken();break;

…
getNextToken();

}
}

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-23

What About Indirect Left
Recursion?

A grammar might have a derivation that
leads to a left recursionleads to a left recursion

A => β1 =>* βn => A γ
There are systematic ways to factorThere are systematic ways to factor
such grammars

See any good compiler bookSee any good compiler book

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-24

Left Factoring

If two rules for a non-terminal have
right hand sides that begin with theright hand sides that begin with the
same symbol, we can’t predict which
one to useone to use
Solution: Factor the common prefix into
a separate productiona separate production

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-25

Left Factoring Example

Original grammar
ifStmt ::= if (expr) stmtifStmt :: if (expr) stmt

| if (expr) stmt else stmt
Factored grammarFactored grammar

ifStmt ::= if (expr) stmt ifTail
ifT il l t t |ifTail ::= else stmt | ε

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-26

Parsing if Statements
But it’s easiest to just
code up the “else
matches closest if”

// parse
// if (expr) stmt [else stmt]
void ifStmt() {matches closest if

rule directly getNextToken();
getNextToken();
expr();

tN tT k ()getNextToken();
stmt();
if (next symbol is ELSE) {

getNextToken();getNextToken();
stmt();

}
}

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-27

}

Another Lookahead Problem

In languages like FORTRAN, parentheses are
used for array subscripts
A FORTRAN grammar includes something like

factor ::= id (subscripts) | id (arguments) | …

When the parser sees “id (”, how can it
decide whether this begins an array element

f f llreference or a function call?

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-28

Two Ways to Handle id (?)

Use the type of id to decide
Requires declare-before-use restriction ifRequires declare before use restriction if
we want to parse in 1 pass

Use a covering grammarUse a covering grammar
factor ::= id (commaSeparatedList) | …

and fix/check later when moreand fix/check later when more
information is available (e.g., types)

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-29

Top-Down Parsing Concluded

Works with a smaller set of grammars
than bottom-up, but can be done forthan bottom up, but can be done for
most sensible programming language
constructsconstructs
If you need to write a quick-n-dirty
parser recursive descent is often theparser, recursive descent is often the
method of choice

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-30

Parsing Concluded

That’s it!
On to the rest of the compilerOn to the rest of the compiler
Coming attractions

I t di t t ti (AST t)Intermediate representations (ASTs etc.)
Semantic analysis (including type checking)
Symbol tables
& more…

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-31

