* CSE 401 — Compilers

Interlude: ASTs, Modularity, and the
Visitor Pattern

Hal Perkins
Winter 2009

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-1

:-| Modularity

= Classic slogans:
= Do one thing well
= Minimize coupling, maximize cohesion
= Isolate operations/abstractions in modules
= Hide implementation details

= OK, so where’s the typechecker module
in MiniJava?

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-2

Operations on ASTs

= In a typical comﬁiler, we may want to do
these things with the AST:
= Print a readable dump of the tree (pretty printing)
= Do static semantic analysis
= Type checking
= Verify that things are declared and initialized properly
= Etc. etc. etc. etc.

= Perform optimizing transformations on the tree
= Generate code from the tree, or

= Generate another IR from the tree for further
processing (often flatten to a linear IR)

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-3

Where do the Operations Go?

= Pure “object-oriented” style
= Smart AST nodes

= Each node knows how to perform every operation
on itself
public class WhileNode extends StmtNode {
public typeCheck(...);
public generateCode(...);
public prettyPrint(...);

}
= Basically the organization in our MiniJava project

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-4

Critique

= This is nicely encapsulated — all details
about a WhileNode are hidden in that class

= But there are issues with modularity

= What happens if we want to add a new
operation?
= Have to open up every node class

= Furthermore, it means that the details of
any particular operation (printing, type
checking) are scattered across the node
classes

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-5

CSE 401 Wi09

Modularity Issues

= Smart nodes make sense if the set of
operations is relatively fixed, particularly
if we expect to need flexibility to add
new kinds of nodes

= Example: graphics system
= Operations: draw, move, iconify, highlight

= Objects: textbox, scrollbar, canvas, menu,
dialog box, plus new objects defined as the
system evolves

2/22/2009 ®© 2002-09 Hal Perkins & UW CSE H-6

H-1

3 Modularity in a Compiler

= Abstract syntax does not change frequently
over time
= .. Kinds of nodes are relatively fixed

= As a compiler evolves, it is more common to
modify or add operations

= Can we modularize each operation (type check,
code gen) so its components are together?

= Can we avoid having to change node classes when
we modify or add an operation?

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-7

:-| Two Views of Modularity

J]olo o] EEERREEE
HAEA I E 21312123
o212 |8 ®I1=|&E |3
S|Is(e|> > |3
2|1®°|e e
S é E
IDENT [X [X |X [X [X circle | X [X [X |X [X
exp X | X [X [X [X text X | X [X [X |X
while | X | X | X | X |X canvas [X [X |X |[X |X
if X [X [X |X |X scroll [X [X |X |X |X
Binop (X [X X |X |X dialog [X [X [X |X |X
2/22/2009 © 2002-09 Hal Perkins & UW CSE H8

Visitor Pattern

= ldea: Package each operation in a separate class
= Contains separate methods for each AST node kind
= Examples: type check class, flatten class, print class
= Create one instance of this visitor class
= Sometimes called a “function object”
= Include a generic “accept visitor” method in
every node class
= To perform the operation, pass the “visitor
object” around the AST during a traversal
= This object contains separate methods to process each
AST node type

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-9

Avoiding instanceof

= Next issue: we'd like to avoid huge if-elseif
nests to check the node type in the visitor
void checkTypes(ASTNode p) {
if (p instanceof WhileNode) { ... }
else if (p instanceof IfNode) { ... }
else if (p instanceof BinExp) { ... } ...
= Solution: Include an overloaded “visit”
method for each node type and get the node
to call back to the correct operation for that
node(!)
= “Double dispatch”

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-10

One More Issue

= We want to be able to add new
operations easily, so the nodes
shouldn’t know anything specific about
the actual visitor class(es)
= Solution: an abstract Visitor interface
= AST nodes include “accept visitor” method
for the interface

= Specific operations (type check, code gen)
are implementations of this interface

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-11

Visitor Interface

interface Visitor {
// overload visit for each AST node type
public void visit(WhileNode s);
public void visit(IfNode s);
public void visit(BinExp e);

X

= Aside: The result type can be whatever is
convenient, doesn’t have to be void

2/22/2009 ®© 2002-09 Hal Perkins & UW CSE H-12

CSE 401 Wi09

H-2

3 Specific class TypeCheckVisitor

/1 Perform type checks on the AST
public class TypeCheckVisitor implements Visitor {
/1 override operations for each node type
public void visit(BinExp €) {
e.expl.accept(this); e.exp2.accept(this);
// do additional processing on e before or after
}
public void visit(WhileNode s) { ... }
public void visit(IfNode s) { ... }

}

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-13

:-| Visitor Method in AST Nodes

= Add a new method to class ASTNode
(base class or interface describing all
AST nodes)

public abstract class ASTNode {

// accept a visit from a Visitor object v
public abstract void accept(Visitor v);

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-14

Override Accept Method in

3 Each Specific AST Node Class

= Example
public class WhileNode extends StmtNode {

/1 accept a visit from a Visitor object v
public void accept(Visitor v) {

v.visit(this); // dynamic dispatch on “this” (WhileNode)
}

}
= Key points
= Visitor object passed as a parameter to WhileNode
= WhileNode calls visit, which dispatches to visit(WhileNode)
automatically — i.e., the correct method for this kind of node

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-15

:.| Encapsulation

= A visitor object often needs to be able
to access state in the AST nodes
= .. May need to expose more state than we
might do to otherwise
= Overall a good tradeoff — better modularity

= (plus, the nodes are relatively simple data
objects anyway)

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-16

Composite Objects

= If the node contains references to subnodes, we
often visit them first (i.e., pass the visitor along in a
depth-first traversal of the AST)

public class WhileNode extends StmtNode {
Expr exp; Stmt stmt; // children

/1 accept a visit from Visitor object v

public void accept(Visitor v) {
this.exp.accept(v);
this.stmt.accept(v);
v.visit(this);

}

= Other traversals can be added if needed

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-17

CSE 401 Wi09

Visitor Actions

= A visitor function has a reference to the node
it is visiting (the parameter)
= .. can access subtrees via that node

= It's also possible for the visitor object to
contain local instance data, used to
accumulate information during the traversal
= Effectively “global data” shared by visit methods
public class TypeCheckVisitor extends NodeVisitor {

public void visit(WhileNode s) { ... }
public void visit(IfNode s) { ... }

private <visitor local state shared by methods>;

}

2/22/2009 ®© 2002-09 Hal Perkins & UW CSE H-18

H-3

5 Responsibility for the Traversal

= Possible choices
= The node objects (as done above)

= The visitor object (the visitor has access to
the node, so it can traverse any
substructure it wishes)

= Some sort of iterator object

= In a compiler, the first choice can
handle many common cases

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-19

Ouch!

= Does it have to be this complicated?

= What we're trying to do: 2-level dispatch during
generic traversal
= First on the kind of operation (type check, print)
= Second on the type of the node

= If our language supports double-dispatch we
could express this directly

= But in Java and conventional O-O languages, only
the first parameter (receiver) controls dispatch

= One solution: multimethods. Research at UW,
see papers by Chambers and colleagues

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-20

1 References

= For Visitor pattern (and many others)

Desfgn Patterns. Elements of Reusable
Object-Oriented Software
Gamma, Helm, Johnson, and Vlissides
Addison-Wesley, 1995
= Good explanation of how to use visitors
in compilers in Appel's Modern Compiler
Implementation in Java

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-21

CSE 401 Wi09

H-4

