
CSE 401 Wi09 H-1

CSE 401 – Compilers

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-1

Interlude: ASTs, Modularity, and the
Visitor Pattern

Hal Perkins
Winter 2009

Modularity

Classic slogans:
Do one thing well
Minimize coupling maximize cohesionMinimize coupling, maximize cohesion
Isolate operations/abstractions in modules
Hide implementation details

OK, so where’s the typechecker module
in MiniJava?

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-2

Operations on ASTs
In a typical compiler, we may want to do
these things with the AST:

Print a readable dump of the tree (pretty printing)
Do static semantic analysis

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-3

y
Type checking
Verify that things are declared and initialized properly
Etc. etc. etc. etc.

Perform optimizing transformations on the tree
Generate code from the tree, or
Generate another IR from the tree for further
processing (often flatten to a linear IR)

Where do the Operations Go?
Pure “object-oriented” style

Smart AST nodes
Each node knows how to perform every operation
on itself

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-4

on itself
public class WhileNode extends StmtNode {

public typeCheck(…);
public generateCode(…);
public prettyPrint(…);
…

}

Basically the organization in our MiniJava project

Critique
This is nicely encapsulated – all details
about a WhileNode are hidden in that class
But there are issues with modularity
What happens if we want to add a newWhat happens if we want to add a new
operation?

Have to open up every node class
Furthermore, it means that the details of
any particular operation (printing, type
checking) are scattered across the node
classes

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-5

Modularity Issues

Smart nodes make sense if the set of
operations is relatively fixed, particularly
if we expect to need flexibility to add

f

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-6

new kinds of nodes
Example: graphics system

Operations: draw, move, iconify, highlight
Objects: textbox, scrollbar, canvas, menu,
dialog box, plus new objects defined as the
system evolves

CSE 401 Wi09 H-2

Modularity in a Compiler
Abstract syntax does not change frequently
over time

∴ Kinds of nodes are relatively fixed
A il l it i t

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-7

As a compiler evolves, it is more common to
modify or add operations

Can we modularize each operation (type check,
code gen) so its components are together?
Can we avoid having to change node classes when
we modify or add an operation?

Two Views of Modularity

Type check

O
ptim

ize

G
enerate x86

Flatten

Print

draw

m
ove

iconify

highlight

transm
ogrify

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-8

IDENT X X X X X

exp X X X X X

while X X X X X

if X X X X X

Binop X X X X X

…

circle X X X X X

text X X X X X

canvas X X X X X

scroll X X X X X

dialog X X X X X

…

Visitor Pattern
Idea: Package each operation in a separate class

Contains separate methods for each AST node kind
Examples: type check class, flatten class, print class

Create one instance of this visitor class

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-9

Create one instance of this visitor class
Sometimes called a “function object”

Include a generic “accept visitor” method in
every node class
To perform the operation, pass the “visitor
object” around the AST during a traversal

This object contains separate methods to process each
AST node type

Avoiding instanceof
Next issue: we’d like to avoid huge if-elseif
nests to check the node type in the visitor

void checkTypes(ASTNode p) {
if (p instanceof WhileNode) { … }

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-10

(p) { }
else if (p instanceof IfNode) { … }
else if (p instanceof BinExp) { … } …

Solution: Include an overloaded “visit”
method for each node type and get the node
to call back to the correct operation for that
node(!)

“Double dispatch”

One More Issue

We want to be able to add new
operations easily, so the nodes
shouldn’t know anything specific about

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-11

the actual visitor class(es)
Solution: an abstract Visitor interface

AST nodes include “accept visitor” method
for the interface
Specific operations (type check, code gen)
are implementations of this interface

Visitor Interface
interface Visitor {

// overload visit for each AST node type
public void visit(WhileNode s);
public void visit(IfNode s);

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-12

public void visit(IfNode s);
public void visit(BinExp e);
…

}

Aside: The result type can be whatever is
convenient, doesn’t have to be void

CSE 401 Wi09 H-3

Specific class TypeCheckVisitor
// Perform type checks on the AST
public class TypeCheckVisitor implements Visitor {

// override operations for each node type
public void visit(BinExp e) {

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-13

p (p) {
e.exp1.accept(this); e.exp2.accept(this);
// do additional processing on e before or after

}
public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
…

}

Visitor Method in AST Nodes

Add a new method to class ASTNode
(base class or interface describing all
AST nodes)

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-14

public abstract class ASTNode {
…
// accept a visit from a Visitor object v
public abstract void accept(Visitor v);
…

}

Override Accept Method in
Each Specific AST Node Class

Example
public class WhileNode extends StmtNode {

…
// accept a visit from a Visitor object v

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-15

public void accept(Visitor v) {
v.visit(this); // dynamic dispatch on “this” (WhileNode)

}
…

}
Key points

Visitor object passed as a parameter to WhileNode
WhileNode calls visit, which dispatches to visit(WhileNode)
automatically – i.e., the correct method for this kind of node

Encapsulation

A visitor object often needs to be able
to access state in the AST nodes

∴ May need to expose more state than we

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-16

∴ May need to expose more state than we
might do to otherwise
Overall a good tradeoff – better modularity

(plus, the nodes are relatively simple data
objects anyway)

Composite Objects
If the node contains references to subnodes, we
often visit them first (i.e., pass the visitor along in a
depth-first traversal of the AST)

public class WhileNode extends StmtNode {
Expr exp; Stmt stmt; // children

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-17

p p; ;
…

// accept a visit from Visitor object v
public void accept(Visitor v) {

this.exp.accept(v);
this.stmt.accept(v);
v.visit(this);

}
…

}
Other traversals can be added if needed

Visitor Actions
A visitor function has a reference to the node
it is visiting (the parameter)

∴ can access subtrees via that node
It’s also possible for the visitor object to

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-18

It s also possible for the visitor object to
contain local instance data, used to
accumulate information during the traversal

Effectively “global data” shared by visit methods
public class TypeCheckVisitor extends NodeVisitor {

public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
…
private <visitor local state shared by methods>;

}

CSE 401 Wi09 H-4

Responsibility for the Traversal

Possible choices
The node objects (as done above)
The visitor object (the visitor has access to

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-19

The visitor object (the visitor has access to
the node, so it can traverse any
substructure it wishes)
Some sort of iterator object

In a compiler, the first choice can
handle many common cases

Ouch!
Does it have to be this complicated?
What we’re trying to do: 2-level dispatch during
generic traversal

First on the kind of operation (type check, print)First on the kind of operation (type check, print)
Second on the type of the node

If our language supports double-dispatch we
could express this directly

But in Java and conventional O-O languages, only
the first parameter (receiver) controls dispatch

One solution: multimethods. Research at UW,
see papers by Chambers and colleagues

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-20

References

For Visitor pattern (and many others)
Design Patterns: Elements of Reusable
Object-Oriented Software

2/22/2009 © 2002-09 Hal Perkins & UW CSE H-21

j
Gamma, Helm, Johnson, and Vlissides
Addison-Wesley, 1995

Good explanation of how to use visitors
in compilers in Appel’s Modern Compiler
Implementation in Java

