
CSE 401 Wi09 I-1

CSE 401 – Compilers

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-1

Static Semantics
Hal Perkins
Winter 2009

Agenda

Static semantics
Types
Symbol tables

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-2

Symbol tables
General ideas for now; details later for
MiniJava project

What do we need to know to
compile this?
class C {

int a;
C(int initial) {

class Main {
public static void main(){

C c = new C(17);

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-3

a = initial;
}
void setA(int val) {

a = val;
}

}

c.setA(42);
}

}

Beyond Syntax
There is a level of correctness that is not captured by
a context-free grammar

Has a variable been declared?
Are types consistent in an expression?

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-4

In the assignment x=y, is y assignable to x?
Does a method call have the right number and types of
parameters?
In a selector p.q, is q a method or field of class instance p?
Is variable x guaranteed to be initialized before it is used?
Could p be null when p.q is executed?
Etc. etc. etc.

What else do we need to
know to generate code?

Where are fields allocated in an object?
How big are objects? (i.e., how much storage
needs to be allocated by new)

h l l bl d h

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-5

Where are local variables stored when a
method is called?
Which methods are associated with an
object/class?

In particular, how do we figure out which method
to call based on the run-time type of an object?

Semantic Analysis
Main tasks

Extract types and other information from the
program
Check language rules that go beyond the context-
ffree grammar
Resolve names

Relate assignments to and references of each variable
“Understand” the program well enough for
synthesis

Final part of the analysis phase / front end of
the compiler

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-6

CSE 401 Wi09 I-2

Symbol Tables
Key data structure during semantic
analysis

For each identifier in the program, record its
attributes (kind, type, etc.)attributes (kind, type, etc.)
Later: assign storage locations (stack frame or
object offsets) for variables; other annotations

Build during semantics pass
Maps identifier names to information
Declarations add bindings to table
Uses look up information – error if not found

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-7

Nested Scopes

Can have same name declared in
different scopes

Why?Why?

References use closest textually-
enclosing declaration

static/lexical scoping, block structure
closer declaration shadows declaration of
enclosing scope

CSE401 Wi09 8

Nested Scopes: Approach
Simple solution

one symbol table per scope
each scope’s symbol table refers to its lexically
enclosing scope’s symbol table
root is the global scope’s symbol table
look up declaration of name starting with nearest
symbol table, proceed to enclosing symbol tables
if not found locally

All scopes in program form a tree
Industrial-strength compiler: engineer this so
table operations are O(1)

CSE401 Wi09 9

Name Spaces
One name may unambiguously refer to different things
class F {
int F(F F) {// 3 different F’s

... new F() ...

... F = ...

... this.F(...) ...
}

}
MiniJava has three name spaces: classes, methods, and
variables

We always know which we mean for each name reference, based
on its syntactic position
So, have the symbol table store a separate map for each name
space

CSE401 Au08 10

Some Kinds of Semantic
Information

Information Generated From Used to process

Symbol tables Declarations Expressions,
statements

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-11

Type information Declarations,
expressions

Operations

Constant/variable
information

Declarations,
expressions

Statements,
expressions

Register & memory
locations

Assigned by compiler Code generation

Values Constants Expressions

Semantic Checks
For each language construct we want to know:

What semantic rules should be checked: specified
by language definition (type compatibility, etc.)
For an expression what is its type (used to checkFor an expression, what is its type (used to check
whether the expression is legal in the current
context)
For declarations in particular, what information
needs to be captured to be used elsewhere

Following slides: A sampler
Not specific to the project (we’ll do that later)

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-12

CSE 401 Wi09 I-3

A Sampling of Semantic
Checks (0)

Name use: id
id has been declared and is in scope
Inferred type of id is its declared type

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-13

Inferred type of id is its declared type
Memory location assigned by compiler

Constant: v
Inferred type and value are explicit

A Sampling of Semantic
Checks (1)

Binary operator: exp1 op exp2

exp1 and exp2 have compatible types
Identical, or

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-14

Identical, or
Well-defined conversion to appropriate types

Inferred type is a function of the operator
and operands

A Sampling of Semantic
Checks (2)

Assignment: exp1 = exp2
exp1 is assignable (not a constant or expression)
exp1 and exp2 have compatible types

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-15

Identical, or
exp2 can be converted to exp1 (e.g., char to int), or
Type of exp2 is a subclass of type of exp1 (can be
decided at compile time)

Inferred type is type of exp1

Location where value is stored is assigned by the
compiler

A Sampling of Semantic
Checks (3)

Cast: (exp1) exp2
exp1 is a type
exp2 either

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-16

Has same type as exp1

Can be converted to type exp1 (e.g., double to int)
Is a superclass of exp1 (in general requires a runtime
check to verify that exp2 has type exp1)

Inferred type is exp1

A Sampling of Semantic
Checks (4)

Field reference exp.f
exp is a reference type (class instance)
The class of exp has a field named f

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-17

The class of exp has a field named f
Inferred type is declared type of f

A Sampling of Semantic
Checks (5)

Method call exp.m(e1, e2, …, en)
exp is a reference type (class instance)
The class of exp has a method named m

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-18

The class of exp has a method named m
The method has n parameters
Each argument has a type that can be
assigned to the associated parameter
Inferred type is given by method
declaration (or is void)

CSE 401 Wi09 I-4

A Sampling of Semantic
Checks (6)

Return statement return exp; return;
The expression can be assigned to a
variable with the declared type of the

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-19

yp
method (if the method is not void)
There’s no expression (if the method is
void)

Semantic Analysis

Parser builds abstract syntax tree
Now need to extract semantic information
and check constraintsand check constraints

Can sometimes be done during the parse, but
often easier to organize as separate phases

And some things can’t be done on the fly during the
parse, e.g., information about identifiers that are
used before they are declared (fields, classes)

Information stored in symbol tables

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-20

Error Recovery

Common example: What to do when an
undeclared identifier is encountered?

Only complain once (Why?)

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-21

Can forge a symbol table entry for it once you’ve
complained so it will be found in the future
Assign the forged entry a type of “unknown”
“Unknown” is the type of all malformed
expressions and is compatible with all other types
to avoid redundant error messages

“Predefined” Things

Many languages have some
“predefined” items
Include code in the compiler toInclude code in the compiler to
manually create symbol table entries for
these when the compiler starts up

Rest of compiler generally doesn’t need to
know the difference between “predeclared”
items and ones found in the program

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-22

Types

Classical roles of types in programming
languages

Run-time safety

2/3/2009 © 2002-08 Hal Perkins & UW CSE I-23

Run time safety
Compile-time error detection
Improved expressiveness (method or
operator overloading, for example)
Provide information to optimizer

Type Checking Terminology
Static vs. dynamic typing

• static: checking done prior to execution (e.g. compile-time)
• dynamic: checking during execution

Strong vs. weak typing g yp g
• strong: guarantees no illegal operations performed
• weak: can’t make guarantees

Caveats:
Hybrids common
Inconsistent usage
common
“untyped,” “typeless”
could mean dynamic
or weak

static dynamic

strong Java Lisp

weak C PERL (1-5)

CSE401 Wi09 24

CSE 401 Wi09 I-5

Type Systems

Base Types
Fundamental, atomic types
Typical examples: int double char

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-25

Typical examples: int, double, char

Compound/Constructed Types
Built up from other types (recursively)
Constructors include arrays, records/
structs/classes, pointers, enumerations,
functions, modules, …

Type Equivalance

For base types this is simple
Types are the same if they are identical
Normally there are well defined rules for

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-26

Normally there are well defined rules for
coercions between arithmetic types

Compiler inserts these automatically or when
requested by programmer (casts)

Type Equivalence for
Compound Types

Two basic strategies
Structural equivalence: two types are the
same if they are the same kind of type and
th i t t i l t

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-27

their component types are equivalent,
recursively (i.e., graphs match)
Name equivalence: two types are the same
only if they have the same name, even if
their structures match

Different language design philosophies

Structural Equivalence
Structural equivalence says two types are equal
iff they have same structure

atomic types are tautologically the same structure
if type constructors:if type constructors:

same constructor
recursively, equivalent arguments to constructor

Ex: atomic types, array types, ML record types
Implement with recursive implementation of
equals, or by canonicalization of types when
types created then use pointer equality

CSE401 Wi09 28

Name Equivalence

Name equivalence says that two types are
equal iff they came from the same textual
occurrence of a type constructor

E l C (Ex: class types, C struct types (struct tag
name), datatypes in ML
special case: type synonyms (e.g. typedef)
don’t define new types

Implement with pointer equality assuming
appropriate representation of type info

CSE401 Wi09 29

Type Casts

In most languages, one can explicitly
cast an object of one type to another

sometimes cast means a conversion (e.g.,sometimes cast means a conversion (e.g.,
casts between numeric types)
sometimes cast means a change of static
type without doing any computation (casts
between pointer types or pointer and
numeric types)

CSE401 Wi09 30

CSE 401 Wi09 I-6

Type Conversions and
Coercions

In Java, can explicitly convert an value
of type double to one of type int

can represent as unary operatorcan represent as unary operator
typecheck, codegen normally

In Java, can implicitly coerce an value
of type int to one of type double

compiler must insert unary conversion
operators, based on result of type checking

CSE401 Wi09 31

C and Java: type casts
In C: safety/correctness of casts not checked

allows writing low-level code that’s type-unsafe
more often used to work around limitations in C’s
static type systemstatic type system

In Java: downcasts from superclass to subclass
include run-time type check to preserve type
safety

static typechecker allows the cast
codegen introduces run-time check
Java’s main form of dynamic type checking

CSE401 Wi09 32

Coming Attractions

Semantics checking for MiniJava project
Then on to code generation…

2/3/2009 © 2002-09 Hal Perkins & UW CSE I-33

