
CSE 401 – CompilersCSE 401 Compilers

x86 Lite for Compiler Writers
Hal PerkinsHal Perkins
Winter 2009

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-1

Agenda

Overview of x86 architecture
Core 32-bit part only, not old compatibility cruft

Later
Survey of MiniJava’s code generator andSurvey of MiniJava s code generator and
mapping MiniJava to x86 code
More sophisticated back-end algorithmso e sop st cated bac e d a go t s
Survey of compiler optimizations

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-2

x86 Selected History
30 Years of x86

1978: 8086 – 16-bit processor, segmentation
1982: 80286 – protected mode floating point1982: 80286 protected mode, floating point
1985: 80386 – 32-bit architecture, “general-purpose”
register set, virtual memory
1993: Pentium – mmx1993: Pentium mmx
1999: Pentium III – SSE
2000-06: Pentium IV – SSE2, SSE3, HT, virtualization
2006: Core & Core 2 – Multicore, SSE4+, virtualization2006: Core & Core 2 Multicore, SSE4+, virtualization

Many internal implementation changes, pipelining,
concurrency, &c

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-3

And It’s Backward-Compatible!
Current processors will run code written for the
8086(!)

(You can get VisiCalc 1 0 & others on the web!)(You can get VisiCalc 1.0 & others on the web!)
∴ The Intel descriptions are loaded down with
modes and flags that obscure the modern,
fairly simple 32 bit processor modelfairly simple 32-bit processor model
Modern processors have a RISC-like core

Simple, register-register & load/store architecturep , g g /
Simple x86 instructions preferred; complex CISC
instructions supported for compatibility

We’ll focus on the basic 32-bit core instructions

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-4

x86 Assembler
Nice thing about standards…
Two main assembler languages for x86

Intel/Microsoft version – what’s in the
documentation
GNU assembler – what we’re generatingGNU assembler what we re generating

Slides use Intel descriptions
Brief information later on differences
And the x86 codegen in MiniJava is already
there so you can just see what it does

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-5

Intel ASM Statements

Format is
optLabel: opcode operands ; comment

optLabel is an optional label
opcode and operands make up the assembly
l i t tilanguage instruction
Anything following a ‘;’ is a comment

Language is very free formLanguage is very free-form
Comments and labels may appear on separate
lines by themselves (we’ll take advantage of this)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-6

y (g)

x86 Memory Model

8-bit bytes, byte addressable
16- 32- 64-bit words doublewords16-, 32-, 64-bit words, doublewords,
and quadwords

Data should almost always be aligned onData should almost always be aligned on
“natural” boundaries; huge performance
penalty on modern processors if it isn’tpenalty on modern processors if it isn t

Little-endian – address of a 4-byte
integer is address of low-order byte

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-7

integer is address of low order byte

Processor Registers

8 32-bit, mostly general purpose registers
eax, ebx, ecx, edx, esi, edi, ebp (base pointer),
esp (stack pointer)

Other registers, not directly addressable
32-bit eflags register

Holds condition codes, processor state, etc.

32-bit “instruction pointer” eip32-bit instruction pointer eip
Holds address of first byte of next instruction to execute

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-8

Processor Fetch-Execute Cycle

Basic cycle (same as every processor you’ve
ever seen)

while (running) {
fetch instruction beginning at eip address
eip <- eip + instruction length
execute instruction

}}

Sequential execution unless a jump stores a
new “next instruction” address in eip

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-9

new next instruction address in eip

Instruction Format

Typical data manipulation instruction
opcode dst,src

Meaning is
dst <- dst op src

Normally, one operand is a register, the
other is a register, memory location, or
integer constantinteger constant

In particular, can’t have both operands in
memory – not enough bits to encode thismemory not enough bits to encode this

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-10

x86 Memory Stack

Register esp points to the “top” of stack
Dedicated for this use; don’t use otherwise;
Points to the last 32-bit doubleword
pushed onto the stack (not next “free”
dbl d)dblword)
Should always be doubleword aligned

It will start out this way and will stay alignedIt will start out this way, and will stay aligned
unless your code does something bad

Stack grows down

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-11

g

Stack Instructions
push src

esp <- esp – 4; memory[esp] <- src
(h t th t k)(e.g., push src onto the stack)

pop dst
dst <- memory[esp]; esp <- esp + 4dst < memory[esp]; esp < esp + 4
(e.g., pop top of stack into dst and logically
remove it from the stack)

Th hi hl ti i d d h il dThese are highly optimized and heavily used
The x86 doesn’t have enough registers, so the
stack is frequently used for temporary space

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-12

q y p y p

Stack Frames
When a method is called, a stack frame is
traditionally allocated on the top of the stack
t h ld it l l i blto hold its local variables
Frame is popped on method return
By convention ebp (base pointer) points to aBy convention, ebp (base pointer) points to a
known offset into the stack frame

Local variables referenced relative to ebpp
(This is often optimized to use esp-relative
addresses instead. Frees up ebp, needs additional
bookkeeping at compile time)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-13

bookkeeping at compile time)

Operand Address Modes (1)

These should cover most of what we’ll need
mov eax,17 ; store 17 in eax
mov eax,ecx ; copy ecx to eax
mov eax,[ebp-12] ; copy memory to eax
mov [ebp+8],eax ; copy eax to memory

R f t bj t fi ld k i il lReferences to object fields work similarly –
put the object’s memory address in a register
and use that address plus an offset

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-14

and use that address plus an offset

Operand Address Modes (2)
In full generality, a memory address can combine the
contents of two registers (with one being scaled) plus
a constant displacement:p

[basereg + index*scale + constant]
Scale can be 2, 4, 8

Main use is for array subscriptingg
Example: suppose

Array of 4-byte ints
Address of the array A is in ecx
Subscript i is in eax
Code to store ecx in A[i]
mov [ecx+eax*4],ecx

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-15

Basic Data Movement and
Arithmetic Instructions

mov dst,src
dst <- src

inc dst
dst <- dst + 1

add dst,src
dst <- dst + src

dec dst
dst <- dst - 1

sub dst,src
dst <- dst – src

neg dst
dst <- - dst
(2’s complement
arithmetic negation)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-16

Integer Multiply and Divide
imul dst,src

dst <- dst * src
32 bit d t

idiv src
Divide edx:eax by src
(edx:eax holds sign32-bit product

dst must be a register

imul dst,src,imm8

(edx:eax holds sign-
extended 64-bit value;
cannot use other
registers for division), ,

dst <- dst*src*imm8
imm8 – 8 bit constant
Obscure but useful for

registers for division)
eax <- quotient
edx <- remainder

dObscure, but useful for
optimizing array
subscripts (but address
modes can do simple

cdq
edx:eax <- 64-bit sign
extended copy of eax

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-17

modes can do simple
scaling)

Bitwise Operations

and dst,src
dst <- dst & src

not dst
dst <- ~ dst

or dst,src
dst <- dst | src

(logical or 1’s
complement)

xor dst,src
dst <- dst ^ src

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-18

Shifts and Rotates
shl dst,count

dst shifted left count
bit

sar dst,count
dst <- dst shifted
i ht t bit (ibits

shr dst,count
dst <- dst shifted

right count bits (sign
bit fill)

rol dst,countdst < dst shifted
right count bits (0
fill)

,
dst <- dst rotated
left count bits
d t tror dst,count
dst <- dst rotated
right count bits

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-19

g

Load Effective Address

The unary & operator in C
lea dst,src ; dst <- address of src, ;

dst must be a register
Address of src includes any address
arithmetic or indexing
Useful to capture addresses for pointers,
reference parameters etcreference parameters, etc.
Also useful for computing arithmetic
expressions that match address arithmetic

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-20

expressions that match address arithmetic

Unconditional Jumps

jmp dst
eip <- address of dsteip < address of dst

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-21

Conditional Jumps

Most arithmetic instructions set bits in eflags
to record information about the result (zero,
non-zero, positive, etc.)

True of add, sub, and, or; but not imul or idiv

Other instructions that set eflags
cmp dst,src ; compare dst to src

d l l d & (l i ltest dst,src ; calculate dst & src (logical
; and); doesn’t change either

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-22

Conditional Jumps Following
Arithmetic Operations
jz label ; jump if result == 0
jnz label ; jump if result != 0
jg label ; jump if result > 0
jng label ; jump if result <= 0
jge label ; jump if result >= 0
jnge label ; jump if result < 0
jl l b l j if lt 0jl label ; jump if result < 0
jnl label ; jump if result >= 0
jle label ; jump if result <= 0
jnle label ; jump if result > 0jnle label ; jump if result > 0

Obviously, the assembler is providing multiple opcode
mnemonics for individual instructions

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-23

Compare and Jump
Conditionally

Want: compare two operands and jump
if a relationship holds between themp
Would like to do this

jmpcond op1,op2,labelj pcond p , p ,
but can’t, because 3-address
instructions can’t be encoded in x86
(true of most other machines for that matter)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-24

cmp and jcc

Instead, use a 2-instruction sequence
cmp op1 op2cmp op1,op2
jcc label

where jcc is a conditional jump that iswhere jcc is a conditional jump that is
taken if the result of the comparison
matches the condition ccmatches the condition cc

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-25

Conditional Jumps Following
Arithmetic Operations
je label ; jump if op1 == op2
jne label ; jump if op1 != op2
jg label ; jump if op1 > op2
jng label ; jump if op1 <= op2
jge label ; jump if op1 >= op2
jnge label ; jump if op1 < op2
jl l b l j if 1 2jl label ; jump if op1 < op2
jnl label ; jump if op1 >= op2
jle label ; jump if op1 <= op2
jnle label ; jump if op1 > op2jnle label ; jump if op1 > op2

Again, the assembler is mapping more than one mnemonic to
some machine instructions

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-26

Function Call and Return

The x86 instruction set itself only provides for
transfer of control (jump) and return
Stack is used to capture return address and
recover it
Everything else – parameter passing, stack
frame organization, register usage – is a

f i d d fi d b hmatter of convention and not defined by the
hardware

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-27

call and ret Instructions

call label
Push address of next instruction and jump
esp <- esp – 4; memory[esp] <- eip
eip <- address of label

ret
Pop address from top of stack and jump
eip < memory[esp]; esp < esp + 4eip <- memory[esp]; esp <- esp + 4
WARNING! The word on the top of the stack had
better be an address, not some leftover data

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-28

,

Win 32 C Function Call
Conventions

Wintel code obeys the following
conventions for C programsp g

Note: calling conventions normally
designed very early in the instruction set/
basic software design Hard (e g basicallybasic software design. Hard (e.g., basically
impossible) to change later.

C++ augments these conventions toC++ augments these conventions to
handle the “this” pointer

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-29

Win32 C Register Conventions
These registers must be restored to their original
values before a function returns, if they are
altered during execution

esp ebp ebx esi ediesp, ebp, ebx, esi, edi
Traditional: push/pop from stack to save/restore

A function may use the other registers (eax, ecx,
edx) however it wants without having toedx) however it wants, without having to
save/restore them
A 32-bit function result is expected to be in eax
when the function returnswhen the function returns
Generated code can get away with bending the
rules, but watch it when you call external C code

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-30

Call Site

Caller is responsible for
Pushing arguments on the stack from rightPushing arguments on the stack from right
to left (allows implementation of varargs)
Execute call instructionExecute call instruction
Pop arguments from stack after return

For us, this means add 4*(# arguments) to esp , (g) p
after the return, since everything is either a 32-
bit variable (int, bool), or a reference (pointer)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-31

Call Example

n = sumOf(17,42)
push 42 ; push argspush 42 ; push args
push 17
call sumOf ; jump &call sumOf ; jump &

; push addr
add esp 8 ; pop argsadd esp,8 ; pop args
mov [ebp+offsetn],eax ; store result

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-32

Callee

Called function must do the following
Save registers if necessaryg y
Allocate stack frame for local variables
Execute function body
Ensure result of non-void function is in eax
Restore any required registers if necessary
Pop the stack frame
Return to caller

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-33

Win32 Function Prologue
The code that needs to be executed before
the statements in the body of the function
are executed is referred to as the prologueare executed is referred to as the prologue
For a Win32 function f, it looks like this:
f: push ebp ; save old frame pointer

mov ebp,esp ; new frame ptr is top of
; stack after arguments and
; return address are pushed; return address are pushed

sub esp,”# bytes needed”
; allocate stack frame

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-34

Win32 Function Epilogue
The epilogue is the code that is executed to obey a
return statement (or if execution “falls off” the
bottom of a void function)bottom of a void function)
For a Win32 function, it looks like this:

mov eax,”function result”
t lt i if t l d; put result in eax if not already

; there (if non-void function)
mov esp,ebp ; restore esp to old value

b f k f ll d; before stack frame allocated
pop ebp ; restore ebp to caller’s value
ret ; return to caller

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-35

Example Function

Source code
int sumOf(int x int y) {int sumOf(int x, int y) {

int a, int b;
a = x;a = x;
b = a + y;
return b;return b;

}

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-36

int sumOf(int x, int y) {
int a, int b;
a = x;
bb = a + y;
return b;

}Stack Frame for sumOf

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-37

Assembly Language Version
;; int sumOf(int x, int y) {
;; int a, int b;
sumOf:

;; b = a + y;
mov eax,[ebp-4]
add eax [ebp+12]sumOf:

push ebp ; prologue
mov ebp,esp

b 8

add eax,[ebp+12]
mov [ebp-8],eax

t bsub esp, 8

;; a = x;

;; return b;
mov eax,[ebp-8]
mov esp,ebp;; ;

mov eax,[ebp+8]
mov [ebp-4],eax

p, p
pop ebp
ret

;; }

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-38

;; }

