
CSE 401 Wi09 N-1

CSE 401 – Compilers

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-1

Two Cool Algorithms: Instruction
Selection and Register Allocation

Hal Perkins
Winter 2009

Agenda

We’ve seen how minijava handles code gen
This lecture

Instruction selection by tree pattern matching

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-2

Register allocation by graph coloring

A Simple Low-Level IR (1)
We want a low-level similar to Minijava’s IL. But
much simpler here for the examples.
Expressions:

CONST(i) – integer constant i

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-3

() g
TEMP(t) – temporary t (i.e., register)
BINOP(op,e1,e2) – application of op to e1,e2
MEM(e) – contents of memory at address e

Means value when used in an expression
Means address when used on left side of assignment

CALL(f,args) – application of function f to argument list args

Simple Low-Level IR (2)
Statements

MOVE(TEMP t, e) – evaluate e and store in temporary t
MOVE(MEM(e1), e2) – evaluate e1 to yield address a;
evaluate e2 and store at a

() l d d d l

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-4

EXP(e) – evaluate expressions e and discard result
SEQ(s1,s2) – execute s1 followed by s2
NAME(n) – assembly language label n
JUMP(e) – jump to e, which can be a NAME label, or more
compex (e.g., switch)
CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to
label t, otherwise jump to f
LABEL(n) – defines location of label n in the code

Low-Level IR Example (1)

For a local variable at a known offset k
from the frame pointer fp

Linear

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-5

Linear
MEM(BINOP(PLUS, TEMP fp, CONST k))

Tree
MEM

+

TEMP fp CONST k

Low-Level IR Example (2)

For an array element e[k], where each
element takes up w storage locations

MEM

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-6

+

MEM *

e k CONST

w

CSE 401 Wi09 N-2

Instruction Selection Issues

Given the low-level IR, there are many
possible code sequences that
implement it correctly

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-7

e.g. to set eax to 0 on x86
mov eax,0 xor eax,eax
sub eax,eax imul eax,0

Many machine instructions do several
things at once – e.g., register arithmetic
and effective address calculation

Implementation
Problem: We need some representation of
the target machine instruction set that
facilitates code generation
Idea: Describe machine instructions using

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-8

Idea: Describe machine instructions using
same low-level IR used for program
Use pattern matching techniques to pick
machine instructions that match fragments of
the program IR tree

Want this to run quickly
Would like to automate as much as possible

Matching: How?
Tree IR – pattern match on trees

Tree patterns as input
Each pattern maps to target machine instruction (or
sequence)

d b

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-9

Use dynamic programming or bottom-up rewrite system
(BURS)

Linear IR – some sort of string matching
Strings as input
Each string maps to target machine instruction sequence
Use text matching or peephole matching

Both work well in practice; actual algorithms are
quite different

An Example Target Machine (1)

Arithmetic Instructions
(unnamed) ri TEMP
ADD ri <- rj + rk +

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-10

ADD ri < rj + rk

MUL ri <- rj * rk

SUB and DIV are similar

+

*

Immediate Instructons
ADDI ri <- rj + c

An Example Target Machine (2)

+ + CONST

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-11

SUBI ri <- rj - c

+

CONST

+

CONST

CONST

-

CONST

Load
LOAD ri <- M[rj + c]

An Example Target Machine (3)

MEM MEM MEM MEM

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-12

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

CSE 401 Wi09 N-3

Store
STORE M[rj + c] <- ri

An Example Target Machine (4)

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-13

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

Tree Pattern Matching (1)

Goal: Tile the low-level tree with
operation (instruction) trees
A tiling is a collection of <node op>

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-14

A tiling is a collection of <node,op>
pairs

node is a node in the tree
op is an operation tree
<node,op> means that op could
implement the subtree at node

Tree Pattern Matching (2)

A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-15

If <node,op> is in the tiling, then node is also
covered by a leaf in another operation tree in the
tiling – unless it is the root
Where two operation trees meet, they must be
compatible (i.e., expect the same value in the
same location)

Generating Code

Two ways to get good tilings
Maximal munch: walk the tree top-down.
At each node find the largest node that fits

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-16

g
(covers the largest subtree at that point).
Dynamic programming:

Assign a cost to each node in the tree = Σ cost
of that node + subtrees
Try all possible combinations bottom-up and
pick minimal cost at each subtree

Example

Codegen for a[i] = x, where i is a register
variable, and a and x are memory resident

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-17

Register Allocation by Graph
Coloring

How to convert the infinite sequence of
temporary data references, t1, t2, … into finite
assignment register numbers $8, $9, …, $25
Goal: Use available registers with minimumGoal: Use available registers with minimum
spilling
Problem: Minimizing the number of registers is
NP-complete … it is equivalent to chromatic
number--minimum colors to color nodes of
graph so no edge connects same color

CSE 401 Wi09 N-4

Begin With Data Flow Graph

procedure-wide register allocation
only live variables require register storage

two variables(values) interfere when their
live ranges overlap

dataflow analysis: a variable is live at node N if
the value it holds is used on some path further

down the control-flow graph; otherwise it is dead

Live Variable Analysis
a := read();
b := read();
c := read();
d := a + b*c;

c

a
b

d

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10) then

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

fe

e

if (d < 10) then
e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);

Register Interference Graph
a := read();
b := read();
c := read();
d := a + b*c;

c

a
b

d

a b

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

fe

e
e

dc

f

Graph Coloring

NP complete problem

Heuristic: color easy nodes last

a b

dc

y
find node N with lowest degree
remove N from the graph
color the simplified graph
set color of N to the first color that is not used
by any of N ’s neighbors

Basics due to Chaitin (1982)

e f

Apply Heuristic

a ba b

e

dc

fe

dc

f

Apply Heuristic

a ba b a b

e

dc

fe

dc

f e

dc

f

CSE 401 Wi09 N-5

Apply Heuristic

a ba b a b a b

e

dc

fe

dc

f e

dc

f e

dc

f

Continued
a b

dc

a b

dc

e

d

f e

d

f

Continued
a b

dc

a b

dc

a b

dc

e

d

f e

d

f e

d

f

Continued
a b

dc

a b

dc

a b

dc

a b

dc

e

d

f e

d

f e

d

f e f

Continued

a b

dc

a b

d

e

dc

f e

dc

f

Continued

a b

dc

a b

d

a b

d

e

dc

f e

dc

f e

dc

f

CSE 401 Wi09 N-6

Continued
a b

dc

e f

Continued
a b

dc

a b

dc

e f e

dc

f

Final Assignment

a b
a := read();
b := read();
c := read();
d := a + b*c;

e

dc

f

if (d < 10) then
e := c+8;
print(c);
else
f := 10;

e := f + d;
print(f);

fi
print(e);

Some Graph Coloring Issues

May run out of registers
Solution: insert spill code and reallocate

Special-purpose and dedicated registersSpecial-purpose and dedicated registers
Examples: function return register, function
argument registers, registers required for
particular instructions
Solution: “pre-color” some nodes to force
allocation to a particular register

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-34

Exercise
{ int tmp_2ab = 2*a*b;

int tmp_aa = a*a;
int tmp_bb = b*b;

x := tmp aa + tmp 2ab + tmp bb;

given that a and b are live on entry and dead on exit,
and that x and y are live on exit:
(a) construct the register interference graph
(b) color the graph; how many registers are needed?

x : tmp_aa + tmp_2ab + tmp_bb;
y := tmp_aa - tmp_2ab + tmp_bb;

}

4 Registers Needed

a tmp_2ab x y

tmp_bbtmp_aab

