
CSE 401 – CompilersCSE 401 Compilers

Dataflow Analysis
Hal PerkinsHal Perkins
Winter 2009

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-1

Agenda

Initial example: dataflow analysis for
common subexpression eliminationcommon subexpression elimination
Other analysis problems that work in
the same frameworkthe same framework

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-2

Available Expressions
A m = a + b

n = a + b

A

p = c + d
B

q = a + b
C

Goal: use dataflow
analysis to find common
subexpressions p = c + d

r = c + d
q = a + b
r = c + d

e = b + 18
D

e = a + 17
E

p
Idea: calculate available
expressions at beginning
of each basic block

s = a + b
u = e + f

t = c + d
u = e + f

v = a + b
F

Avoid re-evaluation of an
available expression – use
a copy operation

w = c + d
x = e + f

y = a + b
z = c + d

G

py p
Simple inside a single block;
more complex dataflow
analysis used across bocks

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-3

z = c + d

“Available” and Other Terms
An expression e is defined at point p in the
CFG if its value is computed at p

Sometimes called definition siteSometimes called definition site
An expression e is killed at point p if one of
its operands is defined at p

Sometimes called kill site
An expression e is available at point p if
every path leading to p contains a priorevery path leading to p contains a prior
definition of e and e is not killed between
that definition and p

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-4

Available Expression Sets

For each block b, define
AVAIL(b) – the set of expressions availableAVAIL(b) the set of expressions available
on entry to b
NKILL(b) – the set of expressions not killedNKILL(b) the set of expressions not killed
in b
DEF(b) – the set of expressions defined in () p
b and not subsequently killed in b

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-5

Computing Available
Expressions

AVAIL(b) is the set
AVAIL(b) = ∩ d (b) (DEF(x) ∪AVAIL(b) ∩x∈preds(b) (DEF(x) ∪

(AVAIL(x) ∩ NKILL(x)))
preds(b) is the set of b’s predecessors inpreds(b) is the set of b s predecessors in
the control flow graph

This gives a system of simultaneousThis gives a system of simultaneous
equations – a dataflow problem

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-6

Computing Available
Expressions

Big Picture
Build control-flow graphBuild control flow graph
Calculate initial local data – DEF(b) and
NKILL(b)NKILL(b)

This only needs to be done once

Iteratively calculate AVAIL(b) by repeatedly y () y p y
evaluating equations until nothing changes

Another fixed-point algorithm

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-7

Computing DEF and NKILL (1)

For each block b with operations o1, o2, …, ok
KILLED = ∅
DEF(b) = ∅
for i = k to 1

assume oi is “x = y + z”
if (y ∉ KILLED and z ∉ KILLED)

add “y + z” to DEF(b)add “y + z” to DEF(b)
add x to KILLED

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-8

…

Computing DEF and NKILL (2)

After computing DEF and KILLED for a
block b,block b,
NKILL(b) = { all expressions }
for each expression efor each expression e

for each variable v ∈ e
if v ∈ KILLED thenif v ∈ KILLED then

NKILL(b) = NKILL(b) - e

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-9

Computing Available
Expressions

Once DEF(b) and NKILL(b) are
computed for all blocks bp
Worklist = { all blocks bi }
while (Worklist ≠ ∅)

remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed

Worklist = Worklist ∪ successors(b)

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-10

Dataflow analysis

Available expressions are an example of
a dataflow analysis problema dataflow analysis problem
Many similar problems can be
expressed in a similar frameworkexpressed in a similar framework
Only the first part of the story – once
we’ve discovered facts we then need towe’ve discovered facts, we then need to
use them to improve code

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-11

Characterizing Dataflow
Analysis

All of these algorithms involve sets of facts
about each basic block b

IN(b) facts true on entry to bIN(b) – facts true on entry to b
OUT(b) – facts true on exit from b
GEN(b) – facts created and not killed in b

(b) f k ll d bKILL(b) – facts killed in b
These are related by the equation

OUT(b) = GEN(b) ∪ (IN(b) – KILL(b)OUT(b) GEN(b) ∪ (IN(b) KILL(b)
Solve this iteratively for all blocks
Sometimes information propagates forward;
sometimes backward

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-12

sometimes backward

Efficiency of Dataflow Analysis

The algorithms eventually terminate,
but the expected time needed can bebut the expected time needed can be
reduced by picking a good order to visit
nodes in the CFGnodes in the CFG

Forward problems – reverse postorder
Backward problems - postorderBackward problems postorder

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-13

Example:
Available Expressions

This is the analysis we did to detect
redundant expression evaluationredundant expression evaluation
Equation:
AVAIL(b) = ∩ (DEF(x) ∪AVAIL(b) = ∩x∈preds(b) (DEF(x) ∪

(AVAIL(x) ∩ NKILL(x)))

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-14

Example:Live Variable Analysis
A variable v is live at point p iff there is any
path from p to a use of v along which v is not

d fi dredefined
Uses

Register allocation – only live variables need aRegister allocation – only live variables need a
register (or temporary)
Eliminating useless stores
Detecting uses of uninitialized variables

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-15

Equations for Live Variables

Sets
USED(b) – variables used in b before being () g
defined in b
NOTDEF(b) – variables not defined in b
LIVE(b) – variables live on exit from b

Equation
LIVE(b) = ∪s∈succ(b) USED(s) ∪

(LIVE(s) ∩ NOTDEF(s))

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-16

Example: Reaching Definitions

A definition d of some variable v
reaches operation i iff i reads thereaches operation i iff i reads the
value of v and there is a path from d
to i that does not define vto i that does not define v
Uses

Find all of the possible definition points forFind all of the possible definition points for
a variable in an expression

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-17

Equations for Reaching
Definitions

Sets
DEFOUT(b) – set of definitions in b that reach the
end of b (i.e., not subsequently redefined in b)
SURVIVED(b) – set of all definitions not obscured
by a definition in bby a definition in b
REACHES(b) – set of definitions that reach b

EquationEquation
REACHES(b) = ∪p∈preds(b) DEFOUT(p) ∪

(REACHES(p) ∩ SURVIVED(p))

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-18

((p) (p))

Example: Very Busy
Expressions

An expression e is considered very busy
at some point p if e is evaluated and p p
used along every path that leaves p,
and evaluating e at p would produce
th lt l ti it t ththe same result as evaluating it at the
original locations
UUses

Code hoisting – move e to p (reduces code
size; no effect on execution time)

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-19

size; no effect on execution time)

Equations for Very Busy
Expressions

Sets
USED(b) – expressions used in b before they are
kill dkilled
KILLED(b) – expressions redefined in b before
they are used
VERYBUSY(b) – expressions very busy on exit
from b

EquationEquation
VERYBUSY(b) = ∩s∈succ(b) USED(s) ∪

(VERYBUSY(s) - KILLED(s))

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-20

(() ())

And so forth…

General framework for discovering facts
about programsabout programs

Although not the only possible story

And then: facts open opportunities forAnd then: facts open opportunities for
code improvement

To be continued…

3/12/2009 © 2002-09 Hal Perkins & UW CSE R-21

CSE 501!

