CSE 401 – Compilers

LR Parser Construction Hal Perkins Autumn 2010

Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR

LR State Machine

- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of handles for a CFG is regular
 - So a DFA can be used to recognize handles
 - Parser reduces when DFA accepts

Prefixes, Handles, &c (review)

- If S is the start symbol of a grammar G,
 - If $S = > * \alpha$ then α is a *sentential form* of G
 - γ is a *viable prefix* of G if there is some derivation $S = >*_{rm} \alpha Aw = >*_{rm} \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
 - The occurrence of β in $\alpha\beta$ w is a *handle* of $\alpha\beta$ w
- An *item* is a marked production (a . at some position in the right hand side)
 - [A ::= . X Y] [A ::= X . Y] [A ::= X Y .]

Building the LR(0) States

Example grammar

$$S' ::= S \$$$
 $S ::= (L)$
 $S ::= x$
 $L ::= S$
 $L ::= L, S$

- We add a production S' with the original start symbol followed by end of file (\$)
- Question: What language does this grammar generate?

Start of LR Parse

Initially

- Stack is empty
- Input is the right hand side of S', i.e., S\$
- Initial configuration is [S'::= . S \$]
- But, since position is just before S, we are also just before anything that can be derived from S

Initial state

$$S'::= . S$$
 start
$$S::= . (L)$$

$$S::= . X$$
 completion

- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

Shift Actions (1)

$$S'::= . S$$

$$S::= . (L)$$

$$S::= . X$$

- To shift past the x, add a new state with the appropriate item(s)
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible

Shift Actions (2)

$$S'::= . S$$

$$S::= . (L)$$

$$L::= . L, S$$

$$L::= . S$$

$$S::= . X$$

$$S::= . (L)$$

$$S::= . X$$

- If we shift past the (, we are at the beginning of L
- the closure adds all productions that start with L,
 which requires adding all productions starting with S

Goto Actions

$$S'::= . S$$

$$S::= . (L)$$

$$S::= . X$$

 Once we reduce S, we'll pop the rhs from the stack exposing the first state.
 Add a goto transition on S for this.

Basic Operations

- Closure (S)
 - Adds all items implied by items already in S
- Goto (I, X)
 - I is a set of items
 - X is a grammar symbol (terminal or nonterminal)
 - Goto moves the dot past the symbol X in all appropriate items in set I

Closure Algorithm

```
repeat
for any item [A ::= \alpha . X\beta] in S
for all productions X ::= \gamma
add [X ::= . \gamma] to S
until S does not change
return S
```

Goto Algorithm

• Goto (I, X) =set new to the empty set for each item $[A ::= \alpha . X \beta]$ in Iadd $[A ::= \alpha X . \beta]$ to new return Closure (new)

This may create a new state, or may return an existing one

LR(0) Construction

- First, augment the grammar with an extra start production S'::= S\$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to Closure([S'::=.S\$])
- Initialize E to empty

LR(0) Construction Algorithm

```
repeat
for each state I in T
for each item [A ::= \alpha . X \beta] in I
Let new be Goto(I, X)
Add new to T if not present
Add I \xrightarrow{\times} new to E if not present
until E and E do not change in this iteration
```

Footnote: For symbol \$, we don't compute goto (I, \$); instead, we make this an accept action.

Example: States for

1.
$$S := (L)$$

3.
$$L := S$$

Building the Parse Tables (1)

- For each edge $I \xrightarrow{\times} J$
 - if X is a terminal, put sj in column X, row I
 of the action table (shift to state j)
 - If X is a non-terminal, put gj in column X, row I of the goto table

Building the Parse Tables (2)

- For each state I containing an item [S'::= S.\$], put accept in column \$ of row I
- Finally, for any state containing $[A ::= \gamma .]$ put action rn (reduce) in every column of row I in the table, where n is the *production* number

Example: Tables for $\frac{3. \ L := S}{4. \ L := L, S}$

1.
$$S := (L)$$

3.
$$L := S$$

4.
$$L := L$$
, S

Where Do We Stand?

- We have built the LR(0) state machine and parser tables
 - No lookahead yet
 - Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

A Grammar that is not LR(0)

 Build the state machine and parse tables for a simple expression grammar

$$S ::= E$$
\$

$$E := T + E$$

$$E ::= T$$

$$T := x$$

1.
$$E := T + E$$

2.
$$E := T$$

3.
$$T := x$$

LR(0) Parser for
$$\frac{2. E := 7}{3. T := x}$$

1	2
S ::= . E \$	S ::= E . \$
E ::= . T + E E ::= . T	T (3)
T ::= . x	E ::= T . + E E ::= T .
(5) \downarrow X	1, 1_
T ::= x .	4 T
	E ::= T + . E
(6) E ::= T + E.	E ::= . T + E E E ::= . T
L− I ⊤ L.	E ::= . x

X	+	\$	Е	Т
s5			g2	G3
		acc		
r2	s4,r2	r2		
s5			g6	G3
r3	r3	r3		
r1	r1	r1		

- State 3 is has two possible actions on +
 - shift 4, or reduce 2
- ∴ Grammar is not LR(0)

2

3

5

6

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
- Easiest form is SLR Simple LR
- So we need to be able to compute
 FOLLOW(A) the set of symbols that can follow A in any possible derivation
 - But to do this, we need to compute FIRST(γ) for strings γ that can follow A

Calculating FIRST(γ)

• Sounds easy... If $\gamma = X Y Z$, then FIRST(γ) is FIRST(X), right?

- But what if we have the rule $X := \varepsilon$?
- In that case, FIRST(γ) includes anything that can follow an X- i.e. FOLLOW(X)

FIRST, FOLLOW, and nullable

- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and non-terminals, FIRST(γ) is the set of terminals that can begin strings derived from γ .
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable (1)

Initialization

set FIRST and FOLLOW to be empty sets set nullable to false for all non-terminals set FIRST[a] to a for all terminal symbols a

Computing FIRST, FOLLOW, and nullable (2)

```
repeat
  for each production X := Y_1 Y_2 ... Y_k
       if Y_1 \dots Y_k are all nullable (or if k = 0)
         set nullable[X] = true
       for each i from 1 to k and each j from i+1 to k
         if Y_1 \dots Y_{i-1} are all nullable (or if i = 1)
              add FIRST[Y_i] to FIRST[X]
         if Y_{i+1} ... Y_k are all nullable (or if i = k)
              add FOLLOW[X] to FOLLOW[Y]
         if Y_{i+1} ... Y_{i-1} are all nullable (or if i+1=j)
              add FIRST[Y_i] to FOLLOW[Y_i]
Until FIRST, FOLLOW, and nullable do not change
```


Example

Grammar

$$Z := d$$

$$Z ::= X Y Z$$

$$Y ::= \varepsilon$$

$$Y ::= c$$

$$X ::= Y$$

$$X := a$$

nullable

X

Y

Z

LR(0) Reduce Actions (review)

Algorithm:

```
Initialize R to empty for each state I in T for each item [A ::= \alpha] in I add (I, A ::= \alpha) to R
```


SLR Construction

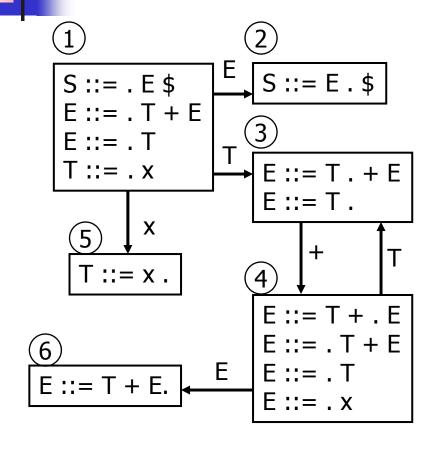
- This is identical to LR(0) states, etc., except for the calculation of reduce actions
- Algorithm:

```
Initialize R to empty
for each state I in T
for each item [A ::= \alpha .] in I
for each terminal a in FOLLOW(A)
add (I, a, A ::= \alpha) to R
```

i.e., reduce α to A in state I only on lookahead a

$$0. S ::= E$$
\$

1.
$$E := T + E$$



X	+	\$	E	Т
s5			g2	g3
		acc		
	s4	r2		
s5			g6	g3
	r3	r3		
		r1		

6

On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An LR(1) item [$A := \alpha \cdot \beta$, a] is
 - A grammar production ($A ::= \alpha \beta$)
 - A right hand side position (the dot)
 - A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from βa .
- Full construction: see the book

LR(1) Tradeoffs

- LR(1)
 - Pro: extremely precise; largest set of grammars
 - Con: potentially very large parse tables with many states

LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
 - Example: these two would be merged

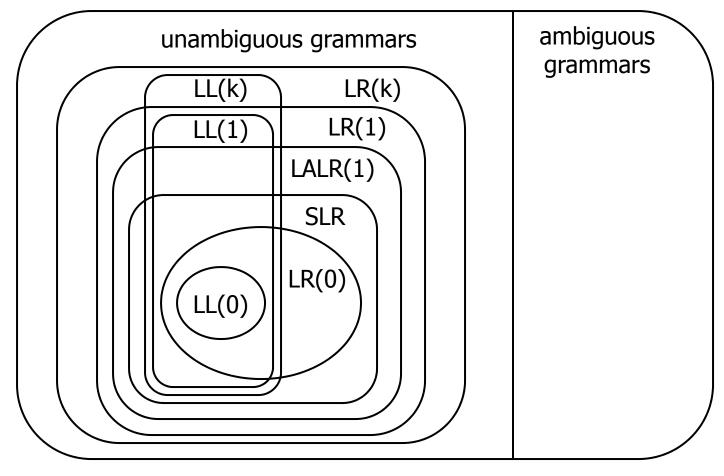
$$[A ::= x . , a]$$

$$[A ::= x . , b]$$

LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn't happen often)

Language Heirarchies



Coming Attractions

- LL(k) Parsing Top-Down
- Recursive Descent Parsers
 - What you can do if you want a parser in a hurry