CSE 401 - Compilers

LL and Recursive-Descent Parsing Hal Perkins Autumn 2010

Agenda

- Top-Down Parsing
- Predictive Parsers
- LL(k) Grammars
- Recursive Descent
- Grammar Hacking
- Left recursion removal
- Factoring

Basic Parsing Strategies (1)

- Bottom-up
- Build up tree from leaves
- Shift next input or reduce a handle
- Accept when all input read and reduced to start symbol of the grammar
- LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input

Basic Parsing Strategies (2)

- Top-Down
- Begin at root with start symbol of grammar
- Repeatedly pick a non-terminal and expand
- Success when expanded tree matches input
- LL(k)

Top-Down Parsing

- Situation: have completed part of a derivation

$$
S=>^{*} w A \alpha=>^{*} w x y
$$

- Basic Step: Pick some production

$$
A::=\beta_{1} \beta_{2} \ldots \beta_{n}
$$

that will properly expand A to match the input

- Want this to be deterministic

Predictive Parsing

- If we are located at some non-terminal A, and there are two or more possible productions

$$
\begin{aligned}
& A::=\alpha \\
& A::=\beta
\end{aligned}
$$

we want to make the correct choice by looking at just the next input symbol

- If we can do this, we can build a predictive parser that can perform a top-down parse without backtracking

Example

- Programming language grammars are often suitable for predictive parsing
- Typical example
stmt ::= id = exp; | return exp;
| if (exp) stmt | while (exp) stmt
If the next part of the input begins with the tokens

IF LPAREN ID(x) ...
we should expand stmt to an if-statement

LL(k) Property

- A grammar has the $\mathrm{LL}(1)$ property if, for all non-terminals A, if productions $A::=\alpha$ and $A::=\beta$ both appear in the grammar, then it is the case that $\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\varnothing$
- If a grammar has the LL(1) property, we can build a predictive parser for it that uses 1-symbol lookahead

LL(k) Parsers

- An LL(k) parser
- Scans the input Left to right
- Constructs a Leftmost derivation
- Looking ahead at most k symbols
- 1-symbol lookahead is enough for many practical programming language grammars
- $\mathrm{LL}(\mathrm{k})$ for $\mathrm{k}>1$ is very rare in practice

Table-Driven LL(k) Parsers

- As with LR(k), a table-driven parser can be constructed from the grammar
- Example

$$
\begin{aligned}
& \text { 1. } S::=(S) S \\
& \text { 2. } S::=[S] S \\
& \text { 3. } S::=\varepsilon
\end{aligned}
$$

- Table

LL vs LR (1)

- Table-driven parsers for both LL and LR can be automatically generated by tools
- LL(1) has to make a decision based on a single non-terminal and the next input symbol
- LR(1) can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol

LL vs LR (2)

- $\therefore \operatorname{LR}(1)$ is more powerful than $\operatorname{LL}(1)$
- Includes a larger set of grammars
- \therefore (editorial opinion) If you're going to use a tool-generated parser, might as well use LR
- But there are some very good LL parser tools out there (ANTLR, JavaCC, ...) that might win for other reasons

Recursive-Descent Parsers

- An advantage of top-down parsing is that it is easy to implement by hand
- Key idea: write a function (procedure, method) corresponding to each nonterminal in the grammar
- Each of these functions is responsible for matching its non-terminal with the next part of the input

Example: Statements

- Grammar
stmt::= id = exp;
| return exp;
if (exp) stmt
| while (exp) stmt
- Method for this grammar rule // parse stmt ::= id=exp; | ... void stmt() \{ switch(nextToken) \{ RETURN: returnStmt(); break; IF: ifStmt(); break; WHILE: whileStmt(); break; ID: assignStmt(); break; \}
\}

Example (cont)

```
// parse while (exp) stmt
void whileStmt() {
    // skip "while" "("
    getNextToken();
    getNextToken();
    // parse condition
    exp();
    // skip ")"
    getNextToken();
    // parse stmt
    stmt();
}
```


Invariant for Parser Functions

- The parser functions need to agree on where they are in the input
- Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal being parsed
- Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal

Possible Problems

- Two common problems for recursivedescent (and LL(1)) parsers
- Left recursion (e.g., $E::=E+T \mid \ldots$)
- Common prefixes on the right side of productions

Left Recursion Problem

- Grammar rule expr ::= expr + term
| term
- Code
// parse expr ::= ...
void expr() \{ expr();
if (current token is
PLUS) \{ getNextToken(); term();
- And the bug is????

Left Recursion Problem

- If we code up a left-recursive rule as-is, we get an infinite recursion
- Non-solution: replace with a rightrecursive rule

$$
\text { expr }::=\text { term }+ \text { expr | term }
$$

- Why isn't this the right thing to do?

One Left Recursion Solution

- Rewrite using right recursion and a new nonterminal
- Original: expr ::= expr + term | term
- New

$$
\begin{aligned}
& \text { expr }::=\text { term exprtail } \\
& \text { exprtail }::=+ \text { term exprtail } \mid \varepsilon
\end{aligned}
$$

- Properties
- No infinite recursion if coded up directly
- Maintains left associatively (required)

Another Way to Look at This

- Observe that

$$
\text { expr ::= expr }+ \text { term | term }
$$

generates the sequence
$(\ldots($ term + term $)+$ term $)+\ldots)+$ term

- We can sugar the original rule to reflect this

$$
\text { expr }::=\text { term }\{+ \text { term }\}^{*}
$$

- This leads directly to parser code

Code for Expressions (1)

```
// parse
// expr ::= term { + term }*
void expr() {
        term();
        while (next symbol is PLUS) {
            getNextToken();
                term()
    }
}
```

```
// parse
// term ::= factor { * factor }*
void term() {
        factor();
        while (next symbol is TIMES) {
                                    getNextToken();
                                    factor()
    }
}
```


Code for Expressions (2)

// parse
// factor ::= int | id | (expr) void factor() \{
switch(nextToken) \{
case INT:
process int constant; getNextToken(); break;

```
    case ID:
process identifier; getNextToken(); break; case LPAREN:
getNextToken(); expr(); getNextToken(); \}

\section*{What About Indirect Left Recursion?}
- A grammar might have a derivation that leads to a left recursion
\[
A=>\beta_{1}=>* \beta_{n}=>A \gamma
\]
- There are systematic ways to factor such grammars
- See any good compiler book

\section*{Left Factoring}
- If two rules for a non-terminal have right hand sides that begin with the same symbol, we can't predict which one to use
- Solution: Factor the common prefix into a separate production

\section*{Left Factoring Example}
- Original grammar
\[
\begin{aligned}
\text { ifStmt }::= & \text { if ( expr ) stmt } \\
& \mid \text { if ( expr ) stmt else stmt }
\end{aligned}
\]
- Factored grammar

\author{
ifStmt ::= if ( expr ) stmt ifTail ifTail ::= else stmt | \(\varepsilon\)
}

\section*{Parsing if Statements}
- But it's easiest to just code up the "else matches closest if" rule directly
```

// parse
// if (expr) stmt [else stmt]
void ifStmt() {
getNextToken();
getNextToken();
expr();
getNextToken();
stmt();
if (next symbol is ELSE) {
getNextToken();
stmt();
}
}

```

\section*{Another Lookahead Problem}
- In languages like FORTRAN, parentheses are used for array subscripts
- A FORTRAN grammar includes something like factor \(::=i d(\) subscripts \() \mid i d(\) arguments \() \mid\)...
- When the parser sees "id(", how can it decide whether this begins an array element reference or a function call?

\section*{Two Ways to Handle id ( ? )}
- Use the type of id to decide
- Requires declare-before-use restriction if we want to parse in 1 pass
- Use a covering grammar
factor ::= id ( commaSeparatedList ) | ...
and fix/check later when more information is available (e.g., types)

\section*{Top-Down Parsing Concluded}
- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
- If you need to write a quick-n-dirty parser, recursive descent is often the method of choice

\section*{Parsing Concluded}
- That's it!
- On to the rest of the compiler
- Coming attractions
- Intermediate representations (ASTs etc.)
- Semantic analysis (including type checking)
- Symbol tables
- \& more...```

