
10/21/2010 © 2002-10 Hal Perkins & UW CSE H-1

CSE 401 – Compilers

ASTs, Modularity, and the Visitor Pattern
Hal Perkins

Autumn 2010



Modularity

Classic slogans:
Do one thing well
Minimize coupling, maximize cohesion
Isolate operations/abstractions in modules
Hide implementation details

OK, so where’s the typechecker module 
in MiniJava?

10/21/2010 © 2002-10 Hal Perkins & UW CSE H-2



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-3

Operations on ASTs
In a typical compiler, we may want to do 
these things with the AST:

Print a readable dump of the tree
Do static semantic analysis

Type checking
Verify that things are declared and initialized properly
Etc. etc. etc. etc.

Perform optimizing transformations on the tree
Generate code from the tree, or
Generate another IR from the tree for further 
processing (often flatten to a linear IR)



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-4

Where do the Operations Go?
Pure “object-oriented” style

Smart AST nodes
Each node knows how to perform every operation 
on itself

public class WhileNode extends StmtNode {
public typeCheck(…);
public generateCode(…);
public prettyPrint(…);
…

}



Critique

This is nicely encapsulated – all details 
about a WhileNode are hidden in that class
But there are issues with modularity

What if we want to add a new operation? 
Have to open up every node class

Details of each individual operation (printing, 
type checking) are scattered

Poor locality; hard to share information needed by 
related operations

10/21/2010 © 2002-10 Hal Perkins & UW CSE H-5



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-6

Modularity Issues

Smart nodes make sense if the set of 
operations is relatively fixed, particularly 
if we expect to need flexibility to add 
new kinds of nodes
Example: graphics system

Operations: draw, move, iconify, highlight
Objects: textbox, scrollbar, canvas, menu, 
dialog box, plus new objects defined as the 
system evolves



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-7

Modularity in a Compiler
Abstract syntax does not change frequently 
over time

∴ Kinds of nodes are relatively stable
As a compiler evolves, it is more common to 
modify or add operations

Can we modularize each operation (type checker, 
code generation) so its components are together?
Can we avoid having to change node classes when 
we modify or add an operation?



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-8

Two Views of Modularity

Type check

O
ptim

ize

G
enerate x86

Flatten

Print

IDENT X X X X X

exp X X X X X

while X X X X X

if X X X X X

Binop X X X X X

…

draw

m
ove

iconify

highlight

transm
ogrify

circle X X X X X

text X X X X X

canvas X X X X X

scroll X X X X X

dialog X X X X X

…



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-9

Visitor Pattern
Idea: Package each operation in a separate class

Contains separate methods for each AST node kind
Examples: print class, type check class, codegen class

Create one instance of this visitor class
Sometimes called a “function object”

Include a generic “accept visitor” method in 
every node class
To perform the operation, pass a “visitor object” 
around the AST during a traversal

This object contains separate methods to process each 
AST node type



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-10

Avoiding instanceof
Next issue: we’d like to avoid huge if-elseif 
nests to check the node type in the visitor

void checkTypes(ASTNode p) {
if (p instanceof WhileNode) { … }
else if (p instanceof IfNode) { … }
else if (p instanceof BinExp) { … } …

Solution: Include an overloaded “visit” 
method for each node type and get the node 
to call back to the correct visitor operation for 
that kind of node(!)

“Double dispatch”



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-11

One More Issue

We want to be able to add new 
operations easily, so the nodes 
shouldn’t know anything specific about 
the actual visitor class(es)
Solution: an abstract Visitor interface

AST nodes include “accept visitor” method 
for the interface
Specific operations (type check, code gen) 
are implementations of this interface



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-12

Visitor Interface
interface Visitor {

// overload visit for each AST node type
public void visit(WhileNode s);
public void visit(IfNode s);
public void visit(BinExp e);
…

}

Aside: The result type can be whatever is 
convenient, doesn’t have to be void



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-13

Specific class TypeCheckVisitor
// Perform type checks on the AST
public class TypeCheckVisitor implements Visitor {

// override operations for each node type
public void visit(BinExp e) { 

e.exp1.accept(this); e.exp2.accept(this);
// do additional processing on e before or after

}
public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
…

}



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-14

Visitor Method in AST Nodes

Add a new method to class ASTNode 
(base class or interface describing all 
AST nodes)

public abstract class ASTNode {
…

// accept a visit from a Visitor object v
public abstract void accept(Visitor v);
…

}



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-15

Override Accept Method in 
Each Specific AST Node Class

Example
public class WhileNode extends StmtNode {

…
// accept a visit from a Visitor object v
public void accept(Visitor v) {

v.visit(this);   // call correct method in visitor v
}
…

}
Key points

Visitor object passed as a parameter to WhileNode
WhileNode calls visit(WhileNode) – i.e., the correct method for this 
kind of node, and executes a visit method defined in the class of 
visitor object v.



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-16

Encapsulation

A visitor object often needs to be able 
to access state in the AST nodes

∴ May need to expose more node state 
than we might do to in a traditional object-
oriented design
Overall a good tradeoff – better modularity

(plus, the nodes are relatively simple data 
objects anyway)



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-17

Composite Objects
If the node contains references to subnodes, we 
often visit them first (i.e., pass the visitor along in a 
depth-first traversal of the AST)

public class WhileNode extends StmtNode {
Expr exp;  Stmt stmt;  // children
…
// accept a visit from Visitor object v
public void accept(Visitor v) {

this.exp.accept(v);
this.stmt.accept(v);
v.visit(this);

}
…

}
Other traversals can be added if needed



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-18

Visitor Actions
A visitor function has a reference to the node 
it is visiting (the parameter)

∴ can access subtrees via that node
It’s also possible for the visitor object to 
contain local instance data, used to 
accumulate information during the traversal

Effectively “global data” shared by visit methods
public class TypeCheckVisitor extends NodeVisitor {

public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
…
private <visitor state shared by methods for different nodes>;

}



10/21/2010 © 2002-10 Hal Perkins & UW CSE H-19

Responsibility for the Traversal
Possible choices

The node objects drive the traversal (pass all 
visitors around the tree a standard way)
The visitor object drives the traversal (the visitor 
has access to the node, so it can traverse any 
substructure it wishes)
Some sort of iterator object

In a compiler, the first choice can handle many 
common cases

But if you need to do something different, do it!



Ouch!
Does it have to be this complicated?
What we’re trying to do: 2-level dispatch

We need to execute the correct method for a 
partocular node type that belongs to a particular visitor 
object (type checker, code generator, etc.)

If our language supported double-dispatch we 
could express this directly

But in Java and conventional O-O languages, only the 
first parameter (receiver) controls dispatch

Another solutions: multimethods.  Research at UW, 
see papers by Chambers and colleagues

But, alas, not part of Java, C#, etc.

10/21/2010 © 2002-10 Hal Perkins & UW CSE H-20



References
For Visitor pattern (and many others)

Design Patterns: Elements of Reusable Object-
Oriented Software, Gamma, Helm, Johnson, 
and Vlissides, Addison-Wesley, 1995
Object-Oriented Design & Patterns, Cay 
Horstmann, 2nd ed, Wiley, 2006

Compiler books: good explanations in
Appel, Modern Compiler Implementation in 
Java (2nd ed)
Fischer, Cytron, LeBlanc, Crafting a Compiler

10/21/2010 © 2002-10 Hal Perkins & UW CSE H-21


