
 1 of 8

CSE 401 Midterm Exam – Winter 2008 Anderson/Roberts

Name: __

CSE Email: __

Total: 90 points.

Question Max Points Score
1 10
2 8
3 10
4 16
5 14
6 12
7 10
8 10

Total 90

This is a “closed everything” test. Answer all questions.

Keep this page up until told to start

 2 of 8

In this test the following alphabetic sets can be used.
Alpha ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Num ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

1. [10] NOTE: Meta-rules such as [] for “zero or one” are not allowed in this
question, you may use epsilon if needed.

(a) A file name base is any sequence of “properly hyphenated” letters or digits, where a
sequence is properly hyphenated if it doesn’t begin or end with a hyphen and there are no
consecutive hyphens; e.g. i8-a-Hot-dog. A file name base must be at least one character
long. Give a regular expression for

file_name_base ::=

(b) A filename is one or more file_name_base sequences each separated from the next by
a period followed optionally by a period and an extension. An extension is exactly three
letters. If there is a period in the filename then there must be an extension. So, a is a file
name; a.b is not a filename, and a.b.doc is. Give a regular expression for

filename ::=

 3 of 8

2. [8] In the MiniJava compiler, we classify tokens into important groups. Give two
examples for each group:

reserved word: delimiter:

operator: tokens with values:

3. [10] Give (a) the concrete syntax tree and (b) the abstract syntax tree for:
(c + a) * b using the grammar and MiniJava-like nodes. E ::= E + T | T

T ::= T * F | F
F ::= id | (E)

 Derivation (Concrete Syntax Tree) AST

 4 of 8

4. [16] Given the following grammar: S ::= aS | aSbS | c

Please use examples or give definitions to explain your answer to the questions below.
Is this grammar:
a) Left Recursive? yes no

Why/Why not?

b) Suitable for predictive parsing? yes no
Why/Why not?

c) Ambiguous? yes no
Why/Why not?

d) Regular? yes no
Why/Why not?

 5 of 8

5. [14] Given the following grammar

s ::= expr $
expr ::= a | a subs
subs ::= [expr] | [expr] subs

Build the first couple of states in the DFA for an LR parser for this grammar.
a) Form the closure for the production: s ::= expr $, shown in the box labeled State 1

below.
b) ALSO draw and label the edges out of State 1.
c) ALSO show the complete contents (closure)of the states reachable by the edges

drawn out of State 1
d) Indicate anything special about states (e.g., conflicts, reducing states)

Do not draw any edges out of other states. You should only have 2-5 states total. We are
not asking you to draw the entire DFA.

State 1

s ::= expr $

 6 of 8

6. [12] Suppose we want to add the following conditional statement to MiniJava:

 ifequal (exp1, exp2)
 statement1
 smaller
 statement2
 larger
 statement3

The meaning of this is that statement1 is executed if the integer expressions exp1 and
exp2 are equal; statement2 is executed if exp1 < exp2, and statement3 is executed if
exp1 > exp2. Note that ifequal, smaller, and larger are all keywords.

(a) [5] Give context-free grammar production(s) for the ifequal statement that allows
either or both of the “smaller” and “larger” parts of the statement to be omitted. If
both the “smaller” and “larger” parts of the statement appear, they should appear in
that order. You do not need to give productions for expressions and other types of
statements, just the ifequal statement (which should be considered a statement as
well).
Write your grammar here:

statement ::=

(b) [5] Is the grammar with your production(s) from part (a) ambiguous? If not, argue
informally why not; if it is ambiguous, give an example that shows that it is.

(c) [2] When compiling this statement, what rule(s) or condition(s) should the type
checker verify?

 7 of 8

7. [10] In class we discussed static/lexical scoping and static typing. What is the
difference? Give a definition for both. Please give a pseudo code example if it helps
your answer.

8. [10] Give an example to show the difference between structural equivalence and
name equivalence.

 8 of 8

