
CSE 401 – CompilersCSE 401 Compilers

LR Parser Construction
Hal PerkinsHal Perkins
Winter 2010

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-1

Agenda

LR(0) state construction
FIRST FOLLOW and nullableFIRST, FOLLOW, and nullable
Variations: SLR, LR(1), LALR

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-2

LR State Machine

Idea: Build a DFA that recognizes
handleshandles

Language generated by a CFG is generally
not regular, butg ,
Language of handles for a CFG is regular

So a DFA can be used to recognize handlesg

Parser reduces when DFA accepts

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-3

Prefixes, Handles, &c (review)

If S is the start symbol of a grammar G,
If S =>* α then α is a sentential form of G
γ is a viable prefix of G if there is some derivation
S =>*rm αAw =>*rm αβw
and γ is a prefix of αβand γ is a prefix of αβ.
The occurrence of β in αβw is a handle of αβw

An item is a marked production (a at someAn item is a marked production (a . at some
position in the right hand side)

[A ::= . X Y] [A ::= X . Y] [A ::= X Y .]

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-4

[] [] []

Building the LR(0) States
Example grammar

S’ ::= S $
S ::= (L)
S ::= x
L ::= SL ::= S
L ::= L , S

We add a production S’ with the original start
f f f $symbol followed by end of file ($)

Question: What language does this grammar
generate?

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-5

g

0. S’ ::= S $
1. S ::= (L)
2 S ::= x

Start of LR Parse
2. S ::= x
3. L ::= S
4. L ::= L , S

Initially
Stack is emptyStack is empty
Input is the right hand side of S’, i.e., S $
Initial configuration is [S’ ::= S $]Initial configuration is [S ::= . S $]
But, since position is just before S, we are
also just before anything that can bealso just before anything that can be
derived from S

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-6

0. S’ ::= S $
1. S ::= (L)
2 S ::= x

Initial state
2. S ::= x
3. L ::= S
4. L ::= L , S

S’ ::= . S $
S (L)

start

S ::= . (L)
S ::= . x completion

A state is just a set of items
Start: an initial set of items
C l ti (l) dditi l d tiCompletion (or closure): additional productions
whose left hand side appears to the right of the
dot in some item already in the state

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-7

0. S’ ::= S $
1. S ::= (L)
2 S ::= x

Shift Actions (1)
2. S ::= x
3. L ::= S
4. L ::= L , S

S’ ::= . S $
S (L) S ::= xx
S ::= . (L)
S ::= . x

S ::= x .

To shift past the x, add a new state with the
appropriate item(s)

In this case a single item; the closure adds nothingIn this case, a single item; the closure adds nothing
This state will lead to a reduction since no further shift is
possible

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-8

0. S’ ::= S $
1. S ::= (L)
2 S ::= x

Shift Actions (2)
2. S ::= x
3. L ::= S
4. L ::= L , S

S’ ::= S $
S ::= (. L)
L ::= L S(S :: . S $

S ::= . (L)
S ::= . x

L ::= . L , S
L ::= . S
S ::= . (L)

(

()
S ::= . x

If we shift past the (, we are at the beginning of L
the closure adds all productions that start with L,
which requires adding all productions starting with S

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-9

which requires adding all productions starting with S

0. S’ ::= S $
1. S ::= (L)
2 S ::= x

Goto Actions
2. S ::= x
3. L ::= S
4. L ::= L , S

S’ ::= . S $
S (L) S’ ::= S $

S
S ::= . (L)
S ::= . x

S ::= S . $

Once we reduce S we’ll pop the rhsOnce we reduce S, we’ll pop the rhs
from the stack exposing the first state.
Add a goto transition on S for this

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-10

Add a goto transition on S for this.

Basic Operations

Closure (S)
Adds all items implied by items already in SAdds all items implied by items already in S

Goto (I, X)
I is a set of itemsI is a set of items
X is a grammar symbol (terminal or non-
terminal)terminal)
Goto moves the dot past the symbol X in
all appropriate items in set I

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-11

all appropriate items in set I

Closure Algorithm

Closure (S) =
repeatrepeat

for any item [A ::= α . X β] in S
for all productions X ::= γfor all productions X ::= γ

add [X ::= . γ] to S
until S does not changeuntil S does not change
return S

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-12

Goto Algorithm

Goto (I, X) =
set new to the empty setset new to the empty set
for each item [A ::= α . X β] in I

add [A ::= α X β] to newadd [A ::= α X . β] to new
return Closure (new)

This may create a new state, or may return an
existing one

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-13

LR(0) Construction

First, augment the grammar with an
extra start production S’ ::= S $extra start production S :: S $
Let T be the set of states
Let E be the set of edgesLet E be the set of edges
Initialize T to Closure ([S’ ::= . S $])
Initialize E to empty

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-14

LR(0) Construction Algorithm
repeat

for each state I in T
f h it [A X β] i Ifor each item [A ::= α . X β] in I

Let new be Goto (I, X)
Add new to T if not presentAdd new to T if not present
Add I new to E if not present

until E and T do not change in this iteration

X

Footnote: For symbol $, we don’t compute goto (I, $); instead,
we make this an accept action.

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-15

LR(0) Reduce Actions

Algorithm:
Initialize R to emptyInitialize R to empty
for each state I in T

f h []for each item [A ::= α .] in I
add (I, A ::= α) to R

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-16

Building the Parse Tables (1)

For each edge I J
if X is a terminal put sj in column X row I

x

if X is a terminal, put sj in column X, row I
of the action table (shift to state j)
If X is a non-terminal, put gj in column X,If X is a non terminal, put gj in column X,
row I of the goto table

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-17

Building the Parse Tables (2)

For each state I containing an item
[S’ ::= S . $], put accept in column $ of[S :: S . $], put accept in column $ of
row I
Finally for any state containingFinally, for any state containing
[A ::= γ .] put action rn in every column
of row I in the table where n is theof row I in the table, where n is the
production number

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-18

0. S’ ::= S $
1. S ::= (L)
2 S ::= x

Example: States for
2. S ::= x
3. L ::= S
4. L ::= L , S

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-19

0. S’ ::= S $
1. S ::= (L)
2 S ::= x

Example: Tables for
2. S ::= x
3. L ::= S
4. L ::= L , S

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-20

Where Do We Stand?

We have built the LR(0) state machine
and parser tablesand parser tables

No lookahead yet
Different variations of LR parsers addDifferent variations of LR parsers add
lookahead information, but basic idea of
states, closures, and edges remains the , , g
same

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-21

A Grammar that is not LR(0)

Build the state machine and parse
tables for a simple expression grammartables for a simple expression grammar

S ::= E $
E ::= T + EE ::= T + E
E ::= T
T ::= xT ::= x

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-22

0. S ::= E $
1. E ::= T + E
2LR(0) Parser for 2. E ::= T
3. T ::= x

S ::= . E $
E ::= T + E

S ::= E . $

1 2
E

x + $ E T

1 s5 g2 G3

2 accE ::= . T + E
E ::= . T
T ::= . x E ::= T . + E

E ::= T .

3
T

2 acc

3 r2 s4,r2 r2

4 s5 g6 G3

5 3 3 3

T ::= x .

E ::= T + E
4

5 + T
x 5 r3 r3 r3

6 r1 r1 r1

State 3 is has two possibleE :: T + . E
E ::= . T + E
E ::= . T
E ::= . x

E ::= T + E.
6

E

State 3 is has two possible
actions on +

shift 4, or reduce 2

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-23

∴ Grammar is not LR(0)

SLR Parsers

Idea: Use information about what can follow
a non-terminal to decide if we should perform
a reduction
Easiest form is SLR – Simple LR
So we need to be able to compute
FOLLOW(A) – the set of symbols that can
f ll A i ibl d i ifollow A in any possible derivation

But to do this, we need to compute FIRST(γ) for
strings γ that can follow A

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-24

strings γ that can follow A

Calculating FIRST(γ)

Sounds easy… If γ = X Y Z , then
FIRST(γ) is FIRST(X), right?FIRST(γ) is FIRST(X), right?

But what if we have the rule X ::= ε?But what if we have the rule X ::= ε?
In that case, FIRST(γ) includes anything
that can follow an X – i e FOLLOW(X)

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-25

that can follow an X i.e. FOLLOW(X)

FIRST, FOLLOW, and nullable

nullable(X) is true if X can derive the empty
string
Given a string γ of terminals and non-
terminals, FIRST(γ) is the set of terminals
that can begin strings derived from γ.
FOLLOW(X) is the set of terminals that can
i di l f ll X i d i iimmediately follow X in some derivation
All three of these are computed together

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-26

Computing FIRST, FOLLOW,
and nullable (1)

Initialization
set FIRST and FOLLOW to be empty setsset FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols aset FIRST[a] to a for all terminal symbols a

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-27

Computing FIRST, FOLLOW,
and nullable (2)
repeat

for each production X := Y1 Y2 … Yk
if Y1 … Yk are all nullable (or if k = 0)1 k ()

set nullable[X] = true
for each i from 1 to k and each j from i +1 to k

if Y Y are all nullable (or if i = 1)if Y1 … Yi-1 are all nullable (or if i = 1)
add FIRST[Yi] to FIRST[X]

if Yi+1 … Yk are all nullable (or if i = k)
dd FOLLOW[X] t FOLLOW[Y]add FOLLOW[X] to FOLLOW[Yi]

if Yi+1 … Yj-1 are all nullable (or if i+1=j)
add FIRST[Yj] to FOLLOW[Yi]

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-28

[j] [i]
Until FIRST, FOLLOW, and nullable do not change

Example

Grammar
Z ::= d

nullable FIRST FOLLOW

X
Z ::= X Y Z
Y ::= ε

X

Y
Y ::= c
X ::= Y
X :: a

Y

ZX ::= a Z

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-29

SLR Construction
This is identical to LR(0) – states, etc., except
for the calculation of reduce actions
Algorithm:

Initialize R to empty
f h I i Tfor each state I in T

for each item [A ::= α .] in I
f h t i l i FOLLOW(A)for each terminal a in FOLLOW(A)

add (I, a, A ::= α) to R
i e reduce α to A in state I only on lookahead a

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-30

i.e., reduce α to A in state I only on lookahead a

0. S ::= E $
1. E ::= T + E
2SLR Parser for 2. E ::= T
3. T ::= x

S ::= . E $
E ::= T + E

S ::= E . $

1 2
E

xx ++ $$ EE TT

11 s5s5 g2g2 g3g3

22 accaccE ::= . T + E
E ::= . T
T ::= . x E ::= T . + E

E ::= T .

3
T

22 accacc

33 r2r2r2 s4s4,r2,r2,r2 r2r2

44 s5s5 g6g6 g3g3

55 333 33 33

T ::= x .

E ::= T + E
4

5 + T
x 55 r3r3r3 r3r3 r3r3

66 r1r1r1 r1r1r1 r1r1

E :: T + . E
E ::= . T + E
E ::= . T
E ::= . x

E ::= T + E.
6

E

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-31

On To LR(1)

Many practical grammars are SLR
LR(1) is more powerful yetLR(1) is more powerful yet
Similar construction, but notion of an
item is more complex incorporatingitem is more complex, incorporating
lookahead information

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-32

LR(1) Items

An LR(1) item [A ::= α . β, a] is
A grammar production (A ::= αβ)g p (β)
A right hand side position (the dot)
A lookahead symbol (a)

Idea: This item indicates that α is the
top of the stack and the next input is
derivable from βa.
Full construction: see the book

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-33

LR(1) Tradeoffs

LR(1)
Pro: extremely precise; largest set ofPro: extremely precise; largest set of
grammars
Con: potentially very large parse tablesCon: potentially very large parse tables
with many states

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-34

LALR(1)

Variation of LR(1), but merge any two
states that differ only in lookaheadstates that differ only in lookahead

Example: these two would be merged
[A ::= x . , a][A :: x . , a]
[A ::= x . , b]

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-35

LALR(1) vs LR(1)

LALR(1) tables can have many fewer
states than LR(1)states than LR(1)
LALR(1) may have reduce conflicts
where LR(1) would not (but in practicewhere LR(1) would not (but in practice
this doesn’t happen often)

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-36

Language Heirarchies
ambiguous
grammars

unambiguous grammars

LR(k)LL(k)

LR(1)

LALR(1)

LL(1)

SLR

LR(0)
LL(0)LL(0)

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-37

Coming Attractions

LL(k) Parsing – Top-Down
Recursive Descent ParsersRecursive Descent Parsers

What you can do if you need a parser in a
hurryhurry

1/21/2010 © 2002-10 Hal Perkins & UW CSE E-38

