CSE 401 – Compilers

LR Parser Construction Hal Perkins Winter 2010

Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR

LR State Machine

- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of handles for a CFG is regular
 - So a DFA can be used to recognize handles
 - Parser reduces when DFA accepts

Prefixes, Handles, &c (review)

- If *S* is the start symbol of a grammar *G*,
 - If $S = >^* \alpha$ then α is a *sentential form* of *G*
 - γ is a *viable prefix* of *G* if there is some derivation $S = \sum_{rm}^{*} \alpha Aw = \sum_{rm}^{*} \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
 - The occurrence of β in $\alpha\beta w$ is a *handle* of $\alpha\beta w$
- An *item* is a marked production (a . at some position in the right hand side)

•
$$[A ::= . X Y] [A ::= X . Y] [A ::= X Y .]$$

Building the LR(0) States

Example grammar

$$S ::= S$$

 $S ::= (L)$

$$L ::= S$$

$$L ::= L, S$$

- We add a production S' with the original start symbol followed by end of file (\$)
- Question: What language does this grammar generate?

Start of LR Parse

- Initially
 - Stack is empty
 - Input is the right hand side of S', i.e., S\$
 - Initial configuration is [S'::= . S \$]
 - But, since position is just before S, we are also just before anything that can be derived from S

Initial state

- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

$$\begin{array}{c|c} S' ::= & S \\ S ::= & (L) \\ S ::= & X \end{array} \xrightarrow{\times} S ::= & X \end{array}$$

- To shift past the x, add a new state with the appropriate item(s)
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible

0.
$$S' ::= S \$$$

1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $I := I S$

$$S'::= . S \ (L) \ S::= . (L) \ S::= . X \ S::=$$

- If we shift past the (, we are at the beginning of L
- the closure adds all productions that start with L, which requires adding all productions starting with S

Goto Actions

$$S'::= . S \ S':= . (L) \qquad S':= S \ S':$$

 Once we reduce *S*, we'll pop the rhs from the stack exposing the first state.
 Add a *goto* transition on *S* for this.

Basic Operations

- Closure (S)
 - Adds all items implied by items already in S
- Goto (I, X)
 - I is a set of items
 - X is a grammar symbol (terminal or nonterminal)
 - Goto moves the dot past the symbol X in all appropriate items in set I

Closure Algorithm

Closure (S) =
 repeat
 for any item [A ::= α . Xβ] in S
 for all productions X ::= γ
 add [X ::= . γ] to S
 until S does not change
 return S

Goto Algorithm

• Goto (I, X) =

set *new* to the empty set for each item $[A ::= \alpha \cdot X \beta]$ in *I* add $[A ::= \alpha X \cdot \beta]$ to *new* return *Closure* (*new*)

This may create a new state, or may return an existing one

LR(0) Construction

- First, augment the grammar with an extra start production S'::= S\$
- Let T be the set of states
- Let *E* be the set of edges
- Initialize T to Closure ([S'::= . S \$])
- Initialize E to empty

LR(0) Construction Algorithm

repeat

for each state *I* in *T* for each item $[A ::= \alpha \cdot X \beta]$ in *I* Let *new* be *Goto* (*I*, *X*) Add *new* to *T* if not present Add $I \xrightarrow{X} new$ to *E* if not present until *E* and *T* do not change in this iteration

Footnote: For symbol \$, we don't compute *goto* (*I*, \$); instead, we make this an *accept* action.

LR(0) Reduce Actions

Algorithm:

 Initialize *R* to empty
 for each state *I* in *T* for each item [*A* ::= α .] in *I* add (*I*, *A* ::= α) to *R*

Building the Parse Tables (1)

• For each edge $I \xrightarrow{x} J$

- if X is a terminal, put sj in column X, row I of the action table (shift to state j)
- If X is a non-terminal, put gj in column X, row I of the goto table

Building the Parse Tables (2)

- For each state I containing an item
 [S' ::= S. \$], put accept in column \$ of row I
- Finally, for any state containing
 [A ::= γ .] put action rn in every column
 of row I in the table, where n is the
 production number

0. S'::= S\$ 1. S::= (L) 2. S::= x 3. L::= S 4. L::= L, S

0. *S*'::= *S*\$ 1. *S*::= (*L*) 2. *S*::= *x* 3. *L*::= *S* 4. *L*::= *L*, *S*

Where Do We Stand?

- We have built the LR(0) state machine and parser tables
 - No lookahead yet
 - Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

A Grammar that is not LR(0)

 Build the state machine and parse tables for a simple expression grammar

$$S ::= E \$$$

 $E ::= T + E$
 $E ::= T$
 $T ::= x$

■ ∴ Grammar is not LR(0)

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
- Easiest form is SLR Simple LR
- So we need to be able to compute
 FOLLOW(A) the set of symbols that can follow A in any possible derivation
 - But to do this, we need to compute FIRST(γ) for strings γ that can follow A

Calculating FIRST(γ)

Sounds easy... If γ = X Y Z, then FIRST(γ) is FIRST(X), right?

• But what if we have the rule $X := \epsilon$?

 In that case, FIRST(γ) includes anything that can follow an X – i.e. FOLLOW(X)

FIRST, FOLLOW, and nullable

- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and nonterminals, FIRST(γ) is the set of terminals that can begin strings derived from γ.
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable (1)

Initialization

set FIRST and FOLLOW to be empty sets set nullable to false for all non-terminals set FIRST[a] to a for all terminal symbols a

Computing FIRST, FOLLOW, and nullable (2)

repeat for each production $X := Y_1 Y_2 \dots Y_k$ if $Y_1 \dots Y_k$ are all nullable (or if k = 0) set nullable[X] = true for each *i* from 1 to k and each *j* from *i*+1 to k if $Y_1 \dots Y_{i-1}$ are all nullable (or if i = 1) add FIRST[Y_i] to FIRST[X] if $Y_{i+1} \dots Y_k$ are all nullable (or if i = k) add FOLLOW[X] to FOLLOW[Y] if $Y_{i+1} \dots Y_{i-1}$ are all nullable (or if i+1=j) add FIRST[Y_i] to FOLLOW[Y_i] Until FIRST, FOLLOW, and nullable do not change

Example

Grammar
 Z::= d
 Z::= X Y Z
 Y::= ε
 Y::= ε
 X::= Y
 X::= Y
 X::= a

nullable FIRST FOLLOW
X
Y
Z

SLR Construction

- This is identical to LR(0) states, etc., except for the calculation of reduce actions
- Algorithm:

Initialize *R* to empty for each state *I* in *T* for each item [*A* ::= α .] in *I* for each item [*A* ::= α) in *I* add (*I*, a, *A* ::= α) to *R*i.e., reduce α to *A* in state *I* only on lookahead a

On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An LR(1) item [$A ::= \alpha \cdot \beta$, a] is
 - A grammar production ($A ::= \alpha \beta$)
 - A right hand side position (the dot)
 - A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from βa.
- Full construction: see the book

LR(1) Tradeoffs

- LR(1)
 - Pro: extremely precise; largest set of grammars
 - Con: potentially very large parse tables with many states

LALR(1)

Variation of LR(1), but merge any two states that differ only in lookahead

Example: these two would be merged

 [A ::= x . , a]
 [A ::= x . , b]

LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn't happen often)

Language Heirarchies

Coming Attractions

- LL(k) Parsing Top-Down
- Recursive Descent Parsers
 - What you can do if you need a parser in a hurry