
CSE 401 – CompilersCSE 401 Compilers

Intermediate Representations
Hal PerkinsHal Perkins
Winter 2010

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-1

Agenda

Parser Semantic Actions
Intermediate RepresentationsIntermediate Representations

Abstract Syntax Trees (ASTs)
Linear RepresentationsLinear Representations
& more

We’re going to skip past LL parsing for the
moment to keep the project on trackmoment to keep the project on track.

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-2

Compiler Structure (review)

Parser MiddleIR
Parser

(optimization)

tokens IR (maybe different)

Scanner Code Gen

characters Assembly or binary code

Source Target

y y

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-3

What’s a Parser to Do?

Idea: at significant points in the parse
perform a semantic action

Typically when a production is reduced (LR) or at
a convenient point in the parse (LL)

T i l ti tiTypical semantic actions
Build (and return) a representation of the parsed
chunk of the input (compiler)chunk of the input (compiler)
Perform some sort of computation and return
result (interpreter)

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-4

Intermediate Representations
In most compilers, the parser builds an
intermediate representation of the
programprogram
Rest of the compiler transforms the IR to
“improve” (optimize) it and eventually p (p) y
translates it to final code

Often will transform initial IR to one or more
different IRs along the waydifferent IRs along the way

Some general examples now; specific
examples as we cover later topicsp p

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-5

IR Design
Decisions affect speed and efficiency of the rest of
the compiler
Desirable propertiesDesirable properties

Easy to generate
Easy to manipulate
E iExpressive
Appropriate level of abstraction

Different tradeoffs depending on compiler goals
Different tradeoffs in different parts of the same
compiler

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-6

IR Design Taxonomy

Structure
Graphical (trees DAGs etc)Graphical (trees, DAGs, etc.)
Linear (code for some abstract machine)
Hybrids are common (e g control-flowHybrids are common (e.g., control-flow
graphs)

Abstraction LevelAbstraction Level
High-level, near to source language
Low level closer to machineLow-level, closer to machine

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-7

Levels of Abstraction

Key design decision: how much detail to
exposeexpose

Affects possibility and profitability of
various optimizationsp
Structural IRs are typically fairly high-level
Linear IRs are typically low-levelLinear IRs are typically low level
But these generalizations don’t necessarily
hold

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-8

Examples: Array Reference

A[i,j] loadI 1 => r1
sub rj,r1 => r2
loadI 10 => r3
mult r2,r3 => r4

b i 1 5

subscript

sub ri,r1 => r5
add r4,r5 => r6
loadI @A => r7

A i j

or

t1 A[i j]

loadI @A => r7
add r7,r6 => r8
load r8 => r9

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-9

t1 ← A[i,j]
load r8 r9

Structural IRs

Typically reflect source (or other higher-
level) language structurelevel) language structure
Tend to be large
Examples: syntax trees DAGsExamples: syntax trees, DAGs
Generally used in early phases of

lcompilers

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-10

Concrete Syntax Trees

The full grammar is needed to guide the
parser, but contains many extraneous details

Chain productions
Rules that control precedence and associativity

Typically the full syntax tree does not need to
be used explicitly

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-11

Abstract Syntax Trees
Want only essential structural information

Omit extraneous junk
C b t d li itl tCan be represented explicitly as a tree or
in a linear form

Example: LISP/Scheme S-expressions areExample: LISP/Scheme S expressions are
essentially ASTs

Common output from parser; used for
static semantics (t pe checking etc) andstatic semantics (type checking, etc.) and
high-level optimizations

Usually lowered for later compiler phasesUsually lowered for later compiler phases

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-12

ASTs in Java
Basic idea is simple: use small classes as
records (or structs) for nodes in the AST

Si l d t t t t t tSimple data structures, not too smart
But also use a bit of inheritance so we can
treat related nodes polymorphicallytreat related nodes polymorphically

E.g., abstract AST class; extend to get generic
classes for statements and expressions;
extend those to get node types for specificextend those to get node types for specific
kinds of statements and expressions

Project details and survey of MiniJava AST
l i ti

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-13

classes in sections

Position Information in Nodes

To produce useful error messages, it’s helpful
to record the source program location
corresponding to a node in that node

Most scanner/parser generators have a hook for
this s all sto ing so ce position info mation inthis, usually storing source position information in
tokens
Included in the MiniJava starter code we
distributed – useful to take advantage of it in your
code

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-14

AST Generation

Idea: each time the parser recognizes a
complete production, it produces as itscomplete production, it produces as its
result an AST node (with links to the
subtrees that are the components ofsubtrees that are the components of
the production in its instance variables)
When we finish parsing the result ofWhen we finish parsing, the result of
the goal symbol is the complete AST for
the program

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-15

the program

AST Generation in YACC/CUP

A result type can be specified for each
item in the grammar specificationitem in the grammar specification
Each parser rule can be annotated with
a semantic action which is just a piecea semantic action, which is just a piece
of Java code that returns a value of the
result typeresult type
The semantic action is executed when
the rule is reduced

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-16

the rule is reduced

ANTLR/JavaCC/others
Integrated tools like these can generate
syntax trees automatically

Ad t k d ’t d t d fiAdvantage: saves work, don’t need to define
AST classes and write semantic actions
Disadvantage: generated trees might not have
h i h l l f b i f hthe right level of abstraction for what you

want to do
For our project, do-it-yourself with CUPFor our project, do it yourself with CUP

The starter code contains the AST classes
from the minijava web site

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-17

Linear IRs

Pseudo-code for some abstract machine
Level of abstraction variesLevel of abstraction varies
Simple, compact data structures

l h dd d kExamples: three-address code, stack
machine code

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-18

Abstraction Levels in Linear IR

Linear IRs can also be close to the
source language, very low-level, orsource language, very low level, or
somewhere in between.
Example: Linear IRs for C arrayExample: Linear IRs for C array
reference a[i][j+2]

High-level: t1 ← a[i,j+1]

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-19

IRs for a[i,j+2], cont.

Medium-level
t1 ← j + 2

Low-level
r1 ← [fp-4]

t2 ← i * 20
t3 ← t1 + t2

r2 ← r1 + 2
r3 ← [fp-8]

t4 ← 4 * t3
t5 ← addr a
t6 t5 + t4

r4 ← r3 * 20
r5 ← r4 + r2
r6 4 * r5t6 ← t5 + t4

t7 ← *t6
r6 ← 4 * r5
r7 ← fp – 216
f1 ← [r7+r6]f1 ← [r7+r6]

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-20

Abstraction Level Tradeoffs

High-level: good for source
optimizations, semantic checkingoptimizations, semantic checking
Low-level: need for good code
generation and resource utilization ingeneration and resource utilization in
back end; many optimizing compilers
work at this level for middle/back endswork at this level for middle/back ends
Medium-level: fine for optimization and
most other middle/back end purposesmost other middle/back-end purposes

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-21

Hybrid IRs

Combination of structural and linear
Level of abstraction variesLevel of abstraction varies
Most common example: control-flow graph

Nodes: basic blocks – uninterrupted linearNodes: basic blocks – uninterrupted linear
sequences of instructions
Edge from B1 to B2 if execution can flow fromEdge from B1 to B2 if execution can flow from
B1 to B2
More later when we survey optimization

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-22

What IR to Use?

Common choice: all(!)
AST or other structural representation built by
parser and used in early stages of the compiler

Closer to source code
Good for semantic analysisGood for semantic analysis
Facilitates some higher-level optimizations

Lower to linear IR for later stages of compiler
Closer to machine code
Exposes machine-related optimizations
Use to build control-flow graph

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-23

Use to build control flow graph

Coming Attractions

Working with ASTs
Where do the algorithms go?g g
Is it really object-oriented? (Does it matter?)

Visitor pattern
Then: Go back and look at LL (top-
down) parsing
After that: semantic analysis, type
checking, and symbol tables

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-24

