!'_ CSE 401 — Compilers

Intermediate Representations
Hal Perkins
Winter 2010

1/26/2010 © 2002-10 Hal Perkins & UW CSE

G-1



i Agenda

s Parser Semantic Actions

= Intermediate Representations
= Abstract Syntax Trees (ASTS)
= Linear Representations
= & more

= We're going to skip past LL parsing for the
moment to keep the project on track.

1/26/2010 © 2002-10 Hal Perkins & UW CSE

G-2



Compliler Structure (review)

tokens IR (maybe different)

characters Assembly or binary code

1/26/2010 © 2002-10 Hal Perkins & UW CSE

G-3



i What's a Parser to Do?

= ldea: at significant points in the parse
perform a semantic action

= Typically when a production is reduced (LR) or at
a convenient point in the parse (LL)

= Typical semantic actions

= Build (and return) a representation of the parsed
chunk of the input (compiler)

= Perform some sort of computation and return
result (interpreter)

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-4



i Intermediate Representations

= In most compilers, the parser builds an
Intermediate representation of the
program

= Rest of the compiler transforms the IR to
“Improve” (optimize) it and eventually
translates it to final code
= Often will transform initial IR to one or more

different IRs along the way

= Some general examples now; specific

examples as we cover later topics

1/26/2010 © 2002-10 Hal Perkins & UW CSE

G-5



IR Design

= Decisions affect speed and efficiency of the rest of
the compiler

= Desirable properties
= Easy to generate
= Easy to manipulate
= EXpressive
= Appropriate level of abstraction
= Different tradeoffs depending on compiler goals

= Different tradeoffs in different parts of the same
compiler

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-6



i IR Design Taxonomy

s Structure
= Graphical (trees, DAGSs, etc.)
= Linear (code for some abstract machine)
= Hybrids are common (e.g., control-flow
graphs)
= Abstraction Level
= High-level, near to source language
= Low-level, closer to machine

1/26/2010 © 2002-10 Hal Perkins & UW CSE

G-7



i Levels of Abstraction

= Key design decision: how much detail to
expose

= Affects possibility and profitability of
various optimizations

= Structural IRs are typically fairly high-level
= Linear IRs are typically low-level

= But these generalizations don’t necessarily
hold

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-8



i Examples: Array Reference

All,j] loadl 1 =>rl
sub rj,rl1 =>r2
[subscript] loadl 10 =>1r3

mult r2,r3 =>r4
sub ri,rl => 15
add r4,r5 =>r6
loadl @A =>r7
add r7,r6 =>r8

load r8 =>1r9

or

t1 « A[i,j]

1/26/2010 © 2002-10 Hal Perkins & UW CSE



i Structural IRs

= Typically reflect source (or other higher-
level) language structure

= Tend to be large
= Examples: syntax trees, DAGs

= Generally used In early phases of
compilers

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-10



i Concrete Syntax Trees

= The full grammar is needed to guide the
parser, but contains many extraneous details

= Chain productions
= Rules that control precedence and associativity

= Typically the full syntax tree does not need to
be used explicitly

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-11



i Abstract Syntax Trees

= Want only essential structural information
= Omit extraneous junk

= Can be represented explicitly as a tree or
In a linear form

= Example: LISP/Scheme S-expressions are
essentially ASTs

= Common output from parser; used for
static semantics (type checking, etc.) and
high-level optimizations

= Usually lowered for later compiler phases

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-12



i ASTs in Java

= Basic idea Is simple: use small classes as
records (or structs) for nodes in the AST

= Simple data structures, not too smart
= But also use a bit of inheritance so we can
treat related nodes polymorphically

= E.g., abstract AST class; extend to get generic
classes for statements and expressions;
extend those to get node types for specific
kinds of statements and expressions
= Project detalls and survey of MinilJava AST

classes In sections

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-13



i Position Information in Nodes

= To produce useful error messages, it's helpful
to record the source program location
corresponding to a node in that node

= Most scanner/parser generators have a hook for
this, usually storing source position information in
tokens

= Included in the MiniJava starter code we
distributed — useful to take advantage of it in your
code

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-14



i AST Generation

= |ldea: each time the parser recognizes a
complete production, it produces as its
result an AST node (with links to the
subtrees that are the components of
the production in Its instance variables)

= When we finish parsing, the result of
the goal symbol is the complete AST for
the program

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-15



i AST Generation in YACC/CUP

= A result type can be specified for each
item In the grammar specification

= Each parser rule can be annotated with
a semantic action, which is just a piece
of Java code that returns a value of the
result type

s The semantic action Is executed when
the rule IS reduced

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-16



i ANTLR/JavaCC/others

= Integrated tools like these can generate
syntax trees automatically

= Advantage: saves work, don't need to define
AST classes and write semantic actions

= Disadvantage: generated trees might not have
the right level of abstraction for what you
want to do

= For our project, do-it-yourself with CUP

= The starter code contains the AST classes
from the minijava web site

1/26/2010 © 2002-10 Hal Perkins & UW CSE H-17



i Linear IRS

s Pseudo-code for some abstract machine
s Level of abstraction varies
= Simple, compact data structures

= Examples: three-address code, stack
machine code

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-18



i Abstraction Levels in Linear IR

s LiInear IRs can also be close to the
source language, very low-level, or
somewhere In between.

= Example: Linear IRs for C array
reference a[i][j+2]

= High-level: tl « a[i,j+1]

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-19



i IRs for afi,j+2], cont.

= Medium-level = Low-level

tl« ]+ 2 rl < [fp-4]
t2 «—1*20 2« rl1+2
13« t1 + 12 r3 < [fp-8]
t4 < 4 * t3 r4 < r3* 20
t5 « addr a 5 <« r4 +r2
to < t5 + t4 e < 4 *r5
t7 <« *t6 r7 « fp— 216

fl « [r7+r6]

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-20



i Abstraction Level Tradeoffs

= High-level: good for source
optimizations, semantic checking

= Low-level: need for good code
generation and resource utilization In
back end; many optimizing compilers
work at this level for middle/back ends

= Medium-level: fine for optimization and
most other middle/back-end purposes

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-21



i Hybrid IRs

s Combination of structural and linear
s Level of abstraction varies

= Most common example: control-flow graph

= Nodes: basic blocks — uninterrupted linear
sequences of instructions

= Edge from B1 to B2 if execution can flow from
Bl to B2

= More later when we survey optimization

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-22



What IR to Use?

= Common choice: all(!)

= AST or other structural representation built by
parser and used in early stages of the compiler
= Closer to source code
=« Good for semantic analysis
« Facilitates some higher-level optimizations

= Lower to linear IR for later stages of compiler
« Closer to machine code
= EXposes machine-related optimizations
=« Use to build control-flow graph

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-23



i Coming Attractions

= Working with ASTs
= Where do the algorithms go?
= Is it really object-oriented? (o it matery)
= Visitor pattern

= Then: Go back and look at LL (top-
down) parsing

= After that: semantic analysis, type
checking, and symbol tables

1/26/2010 © 2002-10 Hal Perkins & UW CSE G-24



