
CSE 401 – CompilersCSE 401 Compilers

Compiler Backend Survey
Hal PerkinsHal Perkins
Winter 2009

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-1

Agenda

A survey of the major pieces of the back
end of the compiler

Instruction selection
Instruction scheduling
R i t ll tiRegister allocation

And three particularly neat algorithms
Instruction selection by tree pattern matchingInstruction selection by tree pattern matching
Instruction list scheduling
Register allocation by graph coloringRegister allocation by graph coloring

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-2

Compiler Organization
en tic

s

21 n ch
ed

el
ec

t

lo
c

pa
rs

e

sc
an

se
m

an
t

op
t2

op
t1

op
tn

is
nt

r.
sc

in
st

r.
se

re
g.

 a
l

front end middle back end

infrastructure – symbol tables, trees, graphs, etc

3/8/2010 © 2002-09 Hal Perkins & UW CSE N-3

Big Picture

Compiler consists of lots of fast stuff
followed by hard problemsy p

Scanner: O(n)
Parser: O(n)
Analysis & Optimization: ~ O(n log n)
Instruction selection: fast or NP-Complete
Instruction scheduling: NP-Complete
Register allocation: NP-Complete

3/8/2010 © 2002-09 Hal Perkins & UW CSE N-4

IR for Code Generation

Assume a low-level RISC-like IR
3 address, register-register instructions +
load/store

r1 <- r2 op r3

Could be tree structure or linearCould be tree structure or linear
Expose as much detail as possible

Assume “enough” (i e ∞) registersAssume enough (i.e., ∞) registers
Invent new temporaries for intermediate results
Map to actual registers later

3/8/2010 © 2002-09 Hal Perkins & UW CSE N-5

p g

Overview
Instruction Selection

Map IR into assembly code
Assume known storage layout and codeAssume known storage layout and code
shape

i.e., the optimization phases have already , p p y
done their thing

Combine low-level IR operations into
machine instructions (take advantage of
addressing modes, etc.)

3/8/2010 © 2002-09 Hal Perkins & UW CSE N-6

A Simple Low-Level IR (1)
What’s important for us is to get a feel for the level
of detail involved; the specifics don’t matter as much
Expressions:Expressions:

CONST(i) – integer constant i
TEMP(t) – temporary t (i.e., register)
BINOP(1 2) li ti f t 1 2BINOP(op,e1,e2) – application of op to e1,e2
MEM(e) – contents of memory at address e

Means value when used in an expression
Means add ess hen sed on left side of assignmentMeans address when used on left side of assignment

CALL(f,args) – application of function f to argument list args

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-7

Simple Low-Level IR (2)
Statements

MOVE(TEMP t, e) – evaluate e and store in temporary t
MOVE(MEM(e1) e2) – evaluate e1 to yield address a;MOVE(MEM(e1), e2) – evaluate e1 to yield address a;
evaluate e2 and store at a
EXP(e) – evaluate expressions e and discard result
SEQ(s1 s2) – execute s1 followed by s2SEQ(s1,s2) execute s1 followed by s2
NAME(n) – assembly language label n
JUMP(e) – jump to e, which can be a NAME label, or more
compex (e.g., switch)compex (e.g., switch)
CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to
label t, otherwise jump to f
LABEL(n) – defines location of label n in the code

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-8

()

Low-Level IR Example (1)

For a local variable at a known offset k
from the frame pointer fpfrom the frame pointer fp

Linear
MEM(BINOP(PLUS, TEMP fp, CONST k))MEM(BINOP(PLUS, TEMP fp, CONST k))

Tree
MEM

+

TEMP fp CONST k

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-9

p

Low-Level IR Example (2)

For an array element e[k], where each
element takes up w storage locationselement takes up w storage locations

MEM

+

MEM *

e k CONST

w

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-10

Instruction Selection Issues

Given the low-level IR, there are many
possible code sequences that p q
implement it correctly

e.g. to set eax to 0 on x86
mov eax,0 xor eax,eax
sub eax,eax imul eax,0

Many machine instructions do severalMany machine instructions do several
things at once – e.g., register arithmetic
and effective address calculation

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-11

Implementation

Goal: find a sequence of machine
instructions that perform the computation
d b d b h ddescribed by the IR code
Idea: Describe machine instructions using

l l l IR d f thsame low-level IR used for program, then
Use tree pattern matching to pick machine
instructions that match fragments of theinstructions that match fragments of the
program IR tree and use a combination of
these up to cover the whole IR codet ese up to co e t e o e code

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-12

An Example Target Machine (1)

Arithmetic Instructions
(unnamed) ri TEMP(unnamed) ri TEMP
ADD ri <- rj + rk +

MUL ri <- rj * rk
*

SUB and DIV are similar

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-13

An Example Target Machine (2)

Immediate Instructons
ADDI ri <- rj + cADDI ri < rj + c

+ + CONST

SUBI ri < rj c

CONST CONST

SUBI ri <- rj - c
-

CONST

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-14

CONST

An Example Target Machine (3)

Load
LOAD ri <- M[rj + c]LOAD ri < M[rj + c]

+ + CONST

MEM MEM MEM MEM

+

CONST

+

CONST

CONST

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-15

An Example Target Machine (4)

Store
STORE M[rj + c] <- riSTORE M[rj + c] < ri

MOVE MOVE MOVE MOVE

+ + CONST

MEM MEM MEM MEM

CONST CONST

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-16

Tree Pattern Matching (1)

Goal: Tile the low-level tree with
operation (instruction) treesoperation (instruction) trees
A tiling is a collection of <node,op>
pairspairs

node is a node in the tree
op is an operation treeop is an operation tree
<node,op> means that op could
implement the subtree at node

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-17

implement the subtree at node

Tree Pattern Matching (2)

A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node

If <node,op> is in the tiling, then node is also
co e ed b a leaf in anothe ope ation t ee in thecovered by a leaf in another operation tree in the
tiling – unless it is the root
Where two operation trees meet, they must be p , y
compatible (i.e., expect the same value in the
same location)

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-18

Example – Tree for a[i]:=x

MEM

MOVE

MEMMEM MEM

+

CONST xFP

+

* CONST xFP
MEM

+ CONST 4TEMP i

CONST aFP

3/8/2010 © 2002-09 Hal Perkins & UW CSE N-19

Generating Tilings

Two common algorithms
Maximal munch:Maximal munch:

Top-down tree walk.
Find largest tile that fits each nodeg

Dynamic programming:
Assign costs to nodes in tree = cost of node +
subtrees
Try all possible combinations bottom-up and
pick cheapestpick cheapest

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-20

Generating Code

Given a tiled tree, to generate code
Postorder treewalk; node-dependant orderPostorder treewalk; node dependant order
for children
Emit code sequences corresponding to tilesEmit code sequences corresponding to tiles
in order
Connect tiles by using same register name y g g
to tie boundaries together

3/8/2010 © 2002-09 Hal Perkins & UW CSE N-21

Overview
Instruction Scheduling

Reorder instructions to minimize execution
time

hide latencies – processor function units,
memory/cache stalls
Originally invented for supercomputers (60s)Originally invented for supercomputers (60s)
Now important everywhere

Even non-RISC machines, i.e., x86, ,
Even if processor reorders on the fly

Assume fixed program at this point

3/8/2010 © 2002-09 Hal Perkins & UW CSE N-22

Latencies for a Simple
Example Machine

Operation Cycles

LOAD 3

STORE 3

ADD 1

MULT 2MULT 2

SHIFT 1

BRANCH 0 TO 8

3/8/2010 © 2002-09 Hal Perkins & UW CSE O-23

Example: w = w*2*x*y*z;
Simple schedule
1 LOAD r1 <- w
4 ADD r1 <- r1 r1

Loads early
1 LOAD r1 <- w
2 LOAD r2 <- x4 ADD r1 <- r1,r1

5 LOAD r2 <- x
8 MULT r1 <- r1,r2
9 LOAD r2 < y

2 LOAD r2 <- x
3 LOAD r3 <- y
4 ADD r1 <- r1,r1
5 MULT r1 < r1 r29 LOAD r2 <- y

12 MULT r1 <- r1,r2
13 LOAD r2 <- z
16 MULT r1 < r1 r2

5 MULT r1 <- r1,r2
6 LOAD r2 <- z
7 MULT r1 <- r1,r3
9 MULT r1 < r1 r216 MULT r1 <- r1,r2

18 STORE w <- r1
21 r1 free

2 i t 20 l

9 MULT r1 <- r1,r2
11 STORE w <- r1
14 r1 is free

3 i t 13 l

3/8/2010 © 2002-09 Hal Perkins & UW CSE O-24

2 registers, 20 cycles 3 registers, 13 cycles

Algorithm Overview
Build a precedence graph P of instructions,
labeled with priorities (usually number of
cycles on critical path to the end)cycles on critical path to the end)
Use list scheduling to construct a
schedule, one cycle at a time, y

At each cycle
Chose a ready operation and schedule it
Update ready queueUpdate ready queue

Rename registers to avoid false
dependencies and conflicts

3/8/2010 © 2002-09 Hal Perkins & UW CSE O-25

Precedence Graph

Nodes n are operations
Attributes of each nodeAttributes of each node

type – kind of operation
delay latencydelay – latency

If node n2 uses the result of node n1,
th i d (1 2) i ththere is an edge e = (n1,n2) in the
graph

3/8/2010 © 2002-09 Hal Perkins & UW CSE O-26

Example
Code
a LOAD r1 <- w
b ADD 1 1 1b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- zg LOAD r2 < z
h MULT r1 <- r1,r2
i STORE w <- r1

3/8/2010 © 2002-09 Hal Perkins & UW CSE O-27

Forward vs Backwards
Backward list scheduling

Work from the root to the leaves
Schedules instructions from end to beginning of
the block

In practice compilers try both and pick theIn practice, compilers try both and pick the
result that minimizes costs

Little extra expense since the precedence graph
d th i f ti b dand other information can be reused

Different directions win in different cases

3/8/2010 © 2002-09 Hal Perkins & UW CSE O-28

Overview
Register Allocation

Map values to actual registers
Previous phases change need for registersPrevious phases change need for registers

Add code to spill values to temporaries
as needed etcas needed, etc.
Usually worth doing another pass of
i t ti h d li ft d if illinstruction scheduling afterwards if spill
code inserted

3/8/2010 © 2002-09 Hal Perkins & UW CSE N-29

Register Allocation by Graph
Coloring

How to convert the infinite sequence of
temporary data references, t1, t2, … into finite
assignment register numbers $8 $9 $25assignment register numbers $8, $9, …, $25
Goal: Use available registers with minimum
spillingspilling
Problem: Minimizing the number of registers is
NP-complete … it is equivalent to chromatic

b i i l t l d fnumber--minimum colors to color nodes of
graph so no edge connects same color

Begin With Data Flow Graph

procedure-wide register allocation
only live variables require register storagey q g g

dataflow analysis: a variable is live at node N if
the value it holds is used on some path furtherthe value it holds is used on some path further

down the control-flow graph; otherwise it is dead

two variables(values) interfere when their
live ranges overlapg p

Live Variable Analysis
a := read();a := read();

b := read();
c := read(); c

a
b

a := read();
b := read();
c := read();c : read();

d := a + b*c;
c

d d := a + b*c;
if (d < 10) then

e := c+8;
d < 10

+8 f 10 fe

;
print(c);

else
f := 10;e := c+8;

print(c);
f := 10;

e := f + d;
print(f);

fe

e

f := 10;
e := f + d;
print(f);

print(e);

fi
print(e);

Register Interference Graph
a := read();
b := read();
c := read(); c

a
b

a b
c : read();
d := a + b*c;

c
d

dc
d < 10

+8 f 10 fe

dc

fe := c+8;
print(c);

f := 10;
e := f + d;
print(f);

fe

e
e f

print(e);

Graph Coloring
a b

NP complete problem
dc

Heuristic: color easy nodes last
find node N with lowest degree
remove N from the graph fremove N from the graph
color the simplified graph
set color of N to the first color that is not used

e f

by any of N ’s neighbors
Basics due to Chaitin (1982), refined by
Briggs (1992)Briggs (1992)

Apply Heuristic

a ba b

dcdc

e fe f e fe f

Apply Heuristic

a ba b a b

dcdc dc

e fe f e fe fe f e f

Apply Heuristic

a ba b a b a b

dcdc dc dc

e fe f e f e fe fe f e f e f

Continued
a b a b

dc dc

e f e f

Continued
a b a b a b

dc dc dc

e f e f e f

Continued
a b a b a b a b

dc dc dc dc

e f e f e f e f

Continued

a b a b

dc dc

e f e f

Continued

a b a b a b

dc dc dc

e f e f e f

Continued
a b

dc

e f

Continued
a b a b

dc dc

e f e f

Final Assignment

a b
a := read();
b := read();
c := read();

dc

()
d := a + b*c;

if (d < 10) then
e := c+8;

e f

e := c+8;
print(c);
else
f := 10;

e := f + d;
print(f);p

fi
print(e);

Some Graph Coloring Issues

May run out of registers
Solution: insert spill code and reallocateSolution: insert spill code and reallocate

Special-purpose and dedicated registers
Examples: function return register functionExamples: function return register, function
argument registers, registers required for
particular instructionsparticular instructions
Solution: “pre-color” some nodes to force
allocation to a particular registerallocation to a particular register

3/8/2010 © 2002-10 Hal Perkins & UW CSE N-46

Exercise
{ int tmp_2ab = 2*a*b;

int tmp_aa = a*a;
int tmp bb = b*b;p_

x := tmp_aa + tmp_2ab + tmp_bb;
y := tmp_aa - tmp_2ab + tmp_bb;

given that a and b are live on entry and dead on exit

}

given that a and b are live on entry and dead on exit,
and that x and y are live on exit:
(a) construct the register interference graph() g g p
(b) color the graph; how many registers are needed?

4 Registers Needed

a tmp_2ab x y

bbb tmp_bbtmp_aab

