
9/27/2011 © 2002-11 Hal Perkins & UW CSE A-1

CSE 401 – Compilers

Overview and Administrivia

Hal Perkins

Autumn 2011

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-2

Credits

 Some direct ancestors of this quarter:

 UW CSE 401 (Chambers, Snyder, Notkin…)

 UW CSE PMP 582/501 (Perkins)

 Cornell CS 412-3 (Teitelbaum, Perkins)

 Rice CS 412 (Cooper, Kennedy, Torczon)

 Many books (Appel; Cooper/Torczon; Aho,
[[Lam,] Sethi,] Ullman [Dragon Book],
Fischer, Cytron , LeBlanc; Muchnick, …)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-3

Agenda

 Introductions

 Administrivia

 What’s a compiler?

 Why you want to take this course

 & a little history if time

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-4

CSE 401 Personnel

 Instructor: Hal Perkins
 CSE 548; perkins[at]cs

 Office hours: tbd + dropins, etc.

 TAs: Sam Fout, Evan Herbst
 Office hours, etc. tbd.

 You!!!

So whadda ya know?

 The revenge of the new core curriculum

 Official prereq: (326 & 378) | (332 & 351)

 E.g., data structures and machine organization

 Who took what?

 CSE 321/322 vs CSE 311/312

 CSE 326 vs CSE 332

 CSE 378 vs CSE 351

 CSE 341 (now optional)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-5

Course Meetings

 Lectures

 MWF 12:30-1:20 here (More 230)

 Sections Thursdays

 AA: 8:30, AB: 9:30, both in More 221

 No sections this week – not far enough
along yet

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-6

Communications

 Course web site

 Discussion board
 For anything related to the course

 Join in! Help each other out

 Mailing list
 You are automatically subscribed if you are

enrolled

 Will keep this fairly low-volume; limited to
things that everyone needs to read

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-7

Requirements & Grading

 Roughly
 40% project

 15% individual written homework

 15% midterm exam (date tbd*)

 25% final exam

 5% other
We reserve the right to adjust as needed

 *Midterm date: Nov. 4 (day after Thur. section)? Or
Nov. 7 (following Monday)? Preferences?

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-8

CSE 401 Course Project

 Best way to learn about compilers is to
build (at least parts of) one

 Course project
 Mini Java compiler: classes, objects, etc.

 But cut down to essentials

 Generate executable x86(-64) code & run it

 Completed in steps through the quarter
 Intermediate steps to keep you on schedule but

where you wind up at the end is major part

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-9

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-10

Project Groups

 You should work in pairs

 Pair programming strongly encouraged

 Space for group SVN repositories &
other shared files provided

 Pick partners soon (end of this week or
by beginning of next)

Academic Integrity

 We want a cooperative group working
together to do great stuff!

 But: you must never misrepresent work
done by someone else as your own,
without proper credit

 Know the rules – ask if in doubt or if
tempted

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-11

Books

 Four good books, all on Eng. Lib. Reserve:

 Cooper & Torczon, Engineering a Compiler.
“Official text” New edition this year, but first
is still good.

 Appel, Modern Compiler Implementation in
Java, 2nd ed. MiniJava adapted from here.

 Aho, Lam, Sethi, Ullman, “Dragon Book”, 2nd
ed (but 1st ed is also fine)

 Fischer, Cytron, LeBlanc, Crafting a Compiler

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-12

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-13

And the point is…

 How do we execute this?

int nPos = 0;

int k = 0;

while (k < length) {

 if (a[k] > 0) {

 nPos++;

 }

}

 The computer only knows 1’s & 0’s

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-14

Structure of a Compiler

 First approximation

 Front end: analysis

 Read source program and understand its
structure and meaning

 Back end: synthesis

 Generate equivalent target language program

Source Target Front End Back End

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-15

Compiler must…

 recognize legal programs (& complain about
illegal ones)

 generate correct code

 manage runtime storage of all variables/data

 agree with OS & linker on target format

Source Target Front End Back End

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-16

Implications

 Need some sort of Intermediate
Representation(s) (IR)

 Front end maps source into IR

 Back end maps IR to target machine code

 Often multiple IRs – higher level at first,
lower level in later phases

Source Target Front End Back End

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-17

Front End

 Usually split into two parts

 Scanner: Responsible for converting character
stream to token stream

 Also: strips out white space, comments

 Parser: Reads token stream; generates IR

 Both of these can be generated automatically

 Source language specified by a formal grammar

 Tools read the grammar and generate scanner &
parser (either table-driven or hard-coded)

Scanner Parser
source tokens IR

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-18

Scanner Example

 Input text
// this statement does very little

if (x >= y) y = 42;

 Token Stream

 Notes: tokens are atomic items, not character
strings; comments & whitespace are not tokens
(in most languages – counterexample: Python)

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-19

Parser Output (IR)

 Many different forms

 Engineering tradeoffs have changed over
time (e.g., memory is (almost) free these days)

 Common output from a parser is an
abstract syntax tree

 Essential meaning of the program without
the syntactic noise

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-20

Parser Example

 Token Stream Input Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-21

Static Semantic Analysis

 During or (more common) after parsing
 Type checking

 Check language requirements like proper
declarations, etc.

 Preliminary resource allocation

 Collect other information needed by back end
analysis and code generation

 Key data structure: Symbol Table(s)
 Maps names -> meaning/types/details

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-22

Back End

 Responsibilities

 Translate IR into target machine code

 Should produce “good” code

 “good” = fast, compact, low power (pick some)

 Should use machine resources effectively

 Registers

 Instructions

 Memory hierarchy

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-23

Back End Structure

 Typically split into two major parts
 “Optimization” – code improvements

 Target Code Generation (machine specific)
 Instruction selection & scheduling

 Register allocation

 Usually walk the AST to generate lower-
level intermediate code before optimization

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-24

The Result

 Input
if (x >= y)

 y = 42;

 Output

 mov eax,[ebp+16]

 cmp eax,[ebp-8]

 jl L17

 mov [ebp-8],42

L17:

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-25

Interpreters & Compilers

 Compiler

 A program that translates a program from
one language (the source) to another (the
target)

 Interpreter

 A program that reads a source program
and produces the results of executing that
program on some input

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-26

Common Issues

 Compilers and interpreters both must
read the input – a stream of characters
– and “understand” it: front-end
analysis phase

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0

) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

Compiler

 Read and analyze entire program

 Translate to semantically equivalent
program in another language

 Presumably easier or more efficient to execute

 Offline process

 Tradeoff: compile-time overhead
(preprocessing) vs execution performance

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-27

Typically implemented with
Compilers

 FORTRAN, C, C++, COBOL, other
programming languages, (La)TeX, SQL
(databases), VHDL, many others

 Particularly appropriate if significant
optimization wanted/needed

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-28

Interpreter

 Interpreter
 Execution engine
 Program analysis interleaved with execution

 running = true;
 while (running) {
 analyze next statement;
 execute that statement;
 }

 Usually requires repeated analysis of individual
statements (particularly in loops, functions)

 But: immediate execution, good debugging &
interaction, etc.

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-29

Often implemented with
interpreters

 Javascript, PERL, Python, Ruby, awk,
sed, shells (bash), Scheme/Lisp/ML,
postscript/pdf, machine simulators

 Particularly efficient if interpreter
overhead is low relative to execution
cost of individual statements
 But even if not (machine simulators),

flexibility, immediacy, or portability may be
worth it

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-30

Hybrid approaches

 Compiler generates byte code intermediate
language, e.g. compile Java source to Java
Virtual Machine .class files, then

 Interpret byte codes directly, or

 Compile some or all byte codes to native code
 Variation: Just-In-Time compiler (JIT) – detect hot

spots & compile on the fly to native code

 Also wide use for Javascript, many functional
languages (Haskell, ML, Ruby), C# and
Microsoft Common Language Runtime, others

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-31

Why Study Compilers? (1)

 Become a better programmer(!)

 Insight into interaction between languages,
compilers, and hardware

 Understanding of implementation
techniques, how code maps to hardware

 What is all that stuff in the debugger
anyway?

 Better intuition about what your code does

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-32

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-33

Why Study Compilers? (2)

 Compiler techniques are everywhere
 Parsing (“little” languages, interpreters, XML)

 Software tools (verifiers, checkers, …)

 Database engines, query languages

 AI, etc.: domain-specific languages

 Text processing
 Tex/LaTex -> dvi -> Postscript -> pdf

 Hardware: VHDL; model-checking tools

 Mathematics (Mathematica, Matlab)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-34

Why Study Compilers? (3)

 Fascinating blend of theory and
engineering

 Direct applications of theory to practice

 Parsing, scanning, static analysis

 Plus some very difficult problems (NP-hard
or worse)

 Resource allocation, “optimization”, etc.

 Need to come up with good-enough
approximations/heuristics

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-35

Why Study Compilers? (4)

 Draws ideas from many parts of CSE
 AI: Greedy algorithms, heuristic search

 Algorithms: graph algorithms, dynamic
programming, approximation algorithms

 Theory: Grammars, DFAs and PDAs, pattern
matching, fixed-point algorithms

 Systems: Allocation & naming, synchronization,
locality

 Architecture: pipelines, instruction set use,
memory hierarchy management, locality

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-36

Why Study Compilers? (5)

 You might even write a compiler some
day!

 You will write parsers and interpreters
for little languages, if not bigger things

 Command languages, configuration files,
XML, network protocols, …

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-37

Some History (1)

 1950’s. Existence proof
 FORTRAN I (1954) – competitive with

hand-optimized code

 1960’s
 New languages: ALGOL, LISP, COBOL,

SIMULA

 Formal notations for syntax, esp. BNF

 Fundamental implementation techniques
 Stack frames, recursive procedures, etc.

Some History (2)

 1970’s
 Syntax: formal methods for producing

compiler front-ends; many theorems

 Late 1970’s, 1980’s
 New languages (functional; object-oriented

- Smalltalk)

 New architectures (RISC machines, parallel
machines, memory hierarchy issues)

 More attention to back-end issues

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-38

Some History (3)

 1990s
 Techniques for compiling objects and

classes, efficiency in the presence of
dynamic dispatch and small methods (Self,
Smalltalk – now common in JVMs, etc.)

 Just-in-time compilers (JITs)

 Compiler technology critical to effective use
of new hardware (RISC, parallel machines,
complex memory hierarchies)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-39

Some History (4)

 Last decade

 Compilation techniques in many new places

 Software analysis, verification, security

 Phased compilation – blurring the lines
between “compile time” and “runtime”

 Using machine learning techniques to control
optimizations(!)

 Dynamic languages – e.g., JavaScript, …

 The new 800 lb gorilla - multicore

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-40

Compiler (and related) Turing
Awards

 1966 Alan Perlis

 1972 Edsger Dijkstra

 1974 Donald Knuth

 1976 Michael Rabin and
Dana Scott

 1977 John Backus

 1978 Bob Floyd

 1979 Ken Iverson

 1980 Tony Hoare

 1984 Niklaus Wirth

 1987 John Cocke

 1991 Robin Milner

 2001 Ole-Johan Dahl
and Kristen Nygaard

 2003 Alan Kay

 2005 Peter Naur

 2006 Fran Allen

 2008 Barbara Liskov

9/27/2011 41 © 2002-11 Hal Perkins & UW CSE

Any questions?

 Your job is to ask questions to be sure
you understand what’s happening and
to slow me down

 Otherwise, I’ll barrel on ahead

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-42

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-43

Coming Attractions

 Quick review of formal grammars

 Lexical analysis – scanning

 Background for first part of the project

 Followed by parsing …

 Start reading: ch. 1, 2.1-2.4

