
10/5/2011 © 2002-11 Hal Perkins & UW CSE B-1

CSE 401 – Compilers

Languages, Automata, Regular
Expressions & Scanners

Hal Perkins
Autumn 2011

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-2

Agenda

 Quick review of basic concepts of
formal grammars

 Regular expressions

 Lexical specification of programming
languages

 Using finite automata to recognize
regular expressions

 Scanners and Tokens

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-3

Programming Language Specs

 Since the 1960s, the syntax of every
significant programming language has
been specified by a formal grammar

 First done in 1959 with BNF (Backus-Naur
Form) used to specify ALGOL 60 syntax

 Borrowed from the linguistics community
(Chomsky)

Formal Languages & Automata
Theory (a review in one slide)

 Alphabet: a finite set of symbols and characters
 String: a finite, possibly empty sequence of symbols from

an alphabet
 Language: a set of strings (possibly empty or infinite)
 Finite specifications of (possibly infinite) languages

 Automaton – a recognizer; a machine that accepts all strings
in a language (and rejects all other strings)

 Grammar – a generator; a system for producing all strings in
the language (and no other strings)

 A particular language may be specified by many different
grammars and automata

 A grammar or automaton specifies only one language

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-4

Language (Chomsky) hierarchy:
quick reminder

 Regular (Type-3) languages are
specified by regular
expressions/grammars and
finite automata (FSAs)

 Context-free (Type-2)
languages are specified by
context-free grammars and
pushdown automata (PDAs)

 Context-sensitive (Type-1)
languages … aren’t too
important

 Recursively-enumerable (Type-
0) languages are specified by
general grammars and Turing
machines

Turing

CSL

CFL

Regular

One distinction among the levels is what
is allowed on the right hand and on the
left hand sides of grammar rules

10/5/2011 5

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-6

Example:
Grammar for a Tiny Language

program ::= statement | program statement

statement ::= assignStmt | ifStmt

assignStmt ::= id = expr ;

ifStmt ::= if (expr) statement

expr ::= id | int | expr + expr

id ::= a | b | c | i | j | k | n | x | y | z

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-7

Productions

 The rules of a grammar are called productions
 Rules contain

 Nonterminal symbols: grammar variables (program,
statement, id, etc.)

 Terminal symbols: concrete syntax that appears in programs
(a, b, c, 0, 1, if, =, (,), …

 Meaning of
 nonterminal ::= <sequence of terminals and nonterminals>

 In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

 Often there are several productions for a nonterminal
– can choose any in different parts of derivation

Exercise: Derive some simple
programs

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-8

program ::= statement | program statement

statement ::= assignStmt | ifStmt

assignStmt ::= id = expr ;

ifStmt ::= if (expr) statement

expr ::= id | int | expr + expr

id ::= a | b | c | i | j | k | n | x | y | z

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-9

Alternative Notations

 There are several syntax notations for
productions in common use; all mean
the same thing

ifStmt ::= if (expr) statement

ifStmt if (expr) statement

<ifStmt> ::= if (<expr>) <statement>

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-10

Parsing

 Parsing: reconstruct the derivation
(syntactic structure) of a program

 In principle, a single recognizer could
work directly from a concrete,
character-by-character grammar

 In practice this is never done

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-11

Parsing & Scanning

 In real compilers the recognizer is split into
two phases

 Scanner: translate input characters to tokens

 Also, report lexical errors like illegal characters and illegal
symbols

 Parser: read token stream and reconstruct the
derivation

Scanner Parser
source tokens

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-12

Why Separate the Scanner
and Parser?

 Simplicity & Separation of Concerns
 Scanner hides details from parser

(comments, whitespace, input files, etc.)
 Parser is easier to build; has simpler input

stream (tokens) / narrow interface

 Efficiency
 Scanner recognizes regular expressions –

proper subset of context free grammars
 (But still often consumes a surprising amount

of the compiler’s total execution time)

But …

 Not always possible to separate cleanly

 Example: C/C++/Java type vs identifier
 Parser would like to know which names are types

and which are identifiers, but

 Scanner doesn’t know how things are declared …

 So we hack around it somehow…
 Either use simpler grammar and disambiguate

later, or communicate between scanner & parser

 Engineering issue: try to keep interfaces as simple
& clean as possible

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-13

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-14

Typical Tokens in
Programming Languages

 Operators & Punctuation
 + - * / () { } [] ; : :: < <= == = != ! …

 Each of these is a distinct lexical class

 Keywords
 if while for goto return switch void …

 Each of these is also a distinct lexical class (not a string)

 Identifiers
 A single ID lexical class, but parameterized by actual id

 Integer constants
 A single INT lexical class, but parameterized by int value

 Other constants, etc.

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-15

Principle of Longest Match

 In most languages, the scanner should pick
the longest possible string to make up the
next token if there is a choice

 Example
return maybe != iffy;

 should be recognized as 5 tokens

 i.e., != is one token, not two; “iffy” is an ID, not
IF followed by ID(fy)

RETURN ID(maybe) NEQ ID(iffy) SCOLON

Lexical Complications

 Most modern languages are free-form
 Layout doesn’t matter

 Whitespace separates tokens

 Alternatives
 Fortran – line oriented

 Haskell, Python – indentation and layout can imply
grouping

 And other confusions
 In C++ or Java, is >> a shift operator or the end

of two nested templates or generic classes?

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-16

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-17

Regular Expressions and FAs

 The lexical grammar (structure) of most
programming languages can be
specified with regular expressions

 (Sometimes a little cheating is needed)

 Tokens can be recognized by a
deterministic finite automaton

 Can be either table-driven or built by hand
based on lexical grammar

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-18

Regular Expressions

 Defined over some alphabet Σ

 For programming languages, alphabet is
usually ASCII or Unicode

 If re is a regular expression, L(re) is
the language (set of strings) generated
by re

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-19

Fundamental REs

re L(re) Notes

a { a } Singleton set, for each a in Σ

ε { ε } Empty string

{ } Empty language

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-20

Operations on REs

 Precedence: * (highest), concatenation, | (lowest)

 Parentheses can be used to group REs as needed

re L(re) Notes

rs L(r)L(s) Concatenation

r|s L(r) L(s) Combination (union)

r* L(r)* 0 or more occurrences
(Kleene closure)

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-21

Abbreviations

 The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Some examples:

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-22

Examples

re Meaning

+ single + character

! single ! character

= single = character

!= 2 character sequence

<= 2 character sequence

xyzzy 5 character sequence

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-23

More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-24

Abbreviations

 Many systems allow abbreviations to
make writing and reading definitions or
specifications easier

 name ::= re

 Restriction: abbreviations may not be
circular (recursive) either directly or
indirectly (else would be non-regular)

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-25

Example

 Possible syntax for numeric constants
 digit ::= [0-9]

 digits ::= digit+

 number ::= digits (. digits)?

 ([eE] (+ | -)? digits) ?

 How would you describe this set in English?

 What are some examples of legal constants
(strings) generated by number ?

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-26

Recognizing REs

 Finite automata can be used to
recognize strings generated by regular
expressions

 Can build by hand or automatically

 Reasonably straightforward, and can be
done systematically

 Tools like Lex, Flex, JFlex et seq do this
automatically, given a set of REs

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-27

Finite State Automaton

 A finite set of states
 One marked as initial state
 One or more marked as final states
 States sometimes labeled or numbered

 A set of transitions from state to state
 Each labeled with symbol from Σ, or ε

 Operate by reading input symbols (usually characters)
 Transition can be taken if labeled with current symbol
 ε-transition can be taken at any time

 Accept when final state reached & no more input
 Scanner uses a FSA as a subroutine – accept longest match each

time called, even if more input; i.e., run the FSA from the current
location in the input each time the scanner is called

 Reject if no transition possible, or no more input and not in final
state (DFA)

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-28

Example: FSA for “cat”

a t c

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-29

DFA vs NFA

 Deterministic Finite Automata (DFA)
 No choice of which transition to take under any

condition

 No ε transitions (arcs)

 Non-deterministic Finite Automata (NFA)
 Choice of transition in at least one case

 Accept if some way to reach a final state on given
input

 Reject if no possible way to final state

 i.e., may need to guess right path or backtrack

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-30

FAs in Scanners

 Want DFA for speed (no backtracking)

 Conversion from regular expressions to
NFA is easy

 There is a well-defined procedure for
converting a NFA to an equivalent DFA

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-31

From RE to NFA: base cases

a

ε

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-32

r s

r s ε

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-33

r | s

r

s ε ε

ε ε

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-34

r *

r

ε

ε ε

Exercise

 Draw the NFA for: b(at|ag) | bug

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-35

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-36

From NFA to DFA

 Subset construction
 Construct a DFA from the NFA, where each DFA state

represents a set of NFA states

 Key idea
 The state of the DFA after reading some input is the set of

all NFA states that could have reached after reading the
same input

 Algorithm: example of a fixed-point computation
 If NFA has n states, DFA has at most 2n states

 => DFA is finite, can construct in finite # steps

 Resulting DFA may have more states than needed
 See books for construction and minimization details

Exercise

 Build DFA for b(at|ag)|bug, given the NFA

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-37

To Tokens

 A scanner is a DFA that finds the next token each time it
is called

 Every “final” state of a DFA emits (returns) a token

 Tokens are the internal compiler names for the lexemes

== becomes equal

(becomes leftParen

private becomes private

 You choose the names

 Also, there may be additional data … \r\n might count

lines; all tokens might include line #

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-38

DFA => Code

 Option 1: Implement by hand using procedures

 one procedure for each token

 each procedure reads one character

 choices implemented using if and switch statements

 Pros

 straightforward to write

 fast

 Cons

 a fair amount of tedious work

 may have subtle differences from the language specification

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-39

DFA => Code [continued]

 Option 1a: Like option 1, but structured as a single
procedure with multiple return points

 choices implemented using if and switch statements

 Pros

 also straightforward to write

 faster

 Cons

 a fair amount of tedious work

 may have subtle differences from the language specification

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-40

DFA => code [continued]

 Option 2: use tool to generate table driven scanner
 Rows: states of DFA
 Columns: input characters
 Entries: action

 Go to next state
 Accept token, go to start state
 Error

 Pros
 Convenient
 Exactly matches specification, if tool generated

 Cons
 “Magic”

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-41

DFA => code [continued]

 Option 2a: use tool to generate scanner
 Transitions embedded in the code
 Choices use conditional statements, loops

 Pros
 Convenient
 Exactly matches specification, if tool generated

 Cons
 “Magic”
 Lots of code – big but potentially quite fast

 Would never write something like this by hand, but can
generate it easily enough

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-42

Example: DFA for hand-
written scanner

 Idea: show a hand-written DFA for some
typical programming language constructs
 Then use to construct hand-written scanner

 Setting: Scanner is called whenever the parser
needs a new token
 Scanner stores current position in input
 From there, use a DFA to recognize the longest

possible input sequence that makes up a token
and return that token; save updated position for
next time

 Disclaimer: Example for illustration only – you’ll
use tools for the course project

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-43

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-44

Scanner DFA Example (1)

0

Accept LPAREN
(

2

Accept RPAREN
)

3

whitespace
or comments

Accept SCOLON
;

4

Accept EOF
end of input

1

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-45

Scanner DFA Example (2)

Accept NEQ
!

6

Accept NOT 7

5
=

[other]

Accept LEQ
<

9

Accept LESS 10

8
=

[other]

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-46

Scanner DFA Example (3)

[0-9]

Accept INT 12

11

[other]

[0-9]

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-47

 Strategies for handling identifiers vs keywords
 Hand-written scanner: look up identifier-like things in table of

keywords to classify (good application of perfect hashing)

 Machine-generated scanner: generate DFA will appropriate
transitions to recognize keywords

 Lots ’o states, but efficient (no extra lookup step)

Scanner DFA Example (4)

[a-zA-Z]

Accept ID or keyword 14

13

[other]

[a-zA-Z0-9_]

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-48

Implementing a Scanner by
Hand – Token Representation

 A token is a simple, tagged structure
public class Token {

 public int kind; // token’s lexical class

 public int intVal; // integer value if class = INT

 public String id; // actual identifier if class = ID

 // lexical classes

 public static final int EOF = 0; // “end of file” token

 public static final int ID = 1; // identifier, not keyword

 public static final int INT = 2; // integer

 public static final int LPAREN = 4;

 public static final int SCOLN = 5;

 public static final int WHILE = 6;

 // etc. etc. etc. …

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-49

Simple Scanner Example

// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-50

Scanner getToken() method

// return next input token
public Token getToken() {
 Token result;

 skipWhiteSpace();

 if (no more input) {
 result = new Token(Token.EOF); return result;
 }

 switch(nextch) {
 case '(': result = new Token(Token.LPAREN); getch(); return result;
 case ‘)': result = new Token(Token.RPAREN); getch(); return result;
 case ‘;': result = new Token(Token.SCOLON); getch(); return result;

 // etc. …

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-51

getToken() (2)

 case '!': // ! or !=
 getch();
 if (nextch == '=') {
 result = new Token(Token.NEQ); getch(); return result;
 } else {
 result = new Token(Token.NOT); return result;
 }

 case '<': // < or <=
 getch();
 if (nextch == '=') {
 result = new Token(Token.LEQ); getch(); return result;
 } else {
 result = new Token(Token.LESS); return result;
 }
 // etc. …

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-52

getToken() (3)

 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 // integer constant
 String num = nextch;
 getch();
 while (nextch is a digit) {
 num = num + nextch; getch();
 }
 result = new Token(Token.INT, Integer(num).intValue());
 return result;
 …

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-53

getToken() (4)

 case 'a': … case 'z':
 case 'A': … case 'Z': // id or keyword
 string s = nextch; getch();
 while (nextch is a letter, digit, or underscore) {
 s = s + nextch; getch();
 }
 if (s is a keyword) {
 result = new Token(keywordTable.getKind(s));
 } else {
 result = new Token(Token.ID, s);
 }
 return result;

MiniJava Scanner Generation

 We’ll use the jflex tool to automatically
create a scanner from a specification file,

 We’ll use the CUP tool to automatically
create a parser from a specification file,

 Token class is shared by jflex and CUP.
Lexical classes are listed in CUP’s input file
and it generates the token class definition.

 Details in next week’s section

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-54

Coming Attractions

 First homework: paper exercises on
regular expressions, automata, etc.

 Then: first part of the compiler
assignment – the scanner

 Next topic: parsing

 Will do LR parsing first – we need this for
the project, then LL (recursive-descent)
parsing, which you should also know.

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-55

