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Agenda 

 Quick review of basic concepts of 
formal grammars 

 Regular expressions 

 Lexical specification of programming 
languages 

 Using finite automata to recognize 
regular expressions 

 Scanners and Tokens 
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Programming Language Specs 

 Since the 1960s, the syntax of every 
significant programming language has 
been specified by a formal grammar 

 First done in 1959 with BNF (Backus-Naur 
Form) used to specify ALGOL 60 syntax 

 Borrowed from the linguistics community 
(Chomsky) 



Formal Languages & Automata 
Theory (a review in one slide) 

 Alphabet: a finite set of symbols and characters 
 String: a finite, possibly empty sequence of symbols from 

an alphabet 
 Language: a set of strings (possibly empty or infinite) 
 Finite specifications of (possibly infinite) languages 

 Automaton – a recognizer; a machine that accepts all strings 
in a language (and rejects all other strings) 

 Grammar – a generator; a system for producing all strings in 
the language (and no other strings) 

 A particular language may be specified by many different 
grammars and automata 

 A grammar or automaton specifies only one language 
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Language (Chomsky) hierarchy: 
quick reminder 

 Regular (Type-3) languages are 
specified by regular 
expressions/grammars and 
finite automata (FSAs) 

 Context-free (Type-2) 
languages are specified by 
context-free grammars and 
pushdown automata (PDAs) 

 Context-sensitive (Type-1) 
languages … aren’t too 
important 

 Recursively-enumerable (Type-
0) languages are specified by 
general grammars and Turing 
machines 

Turing 

CSL 

CFL 

Regular 

One distinction among the levels is what 
is allowed on the right hand and on the 
left hand sides of grammar rules 
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Example: 
Grammar for a Tiny Language 

program ::= statement | program statement 

statement ::= assignStmt | ifStmt 

assignStmt ::= id = expr ; 

ifStmt ::= if ( expr ) statement 

expr ::= id | int | expr + expr 

id ::= a | b | c | i | j | k | n | x | y | z 

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Productions 

 The rules of a grammar are called productions 
 Rules contain 

 Nonterminal symbols: grammar variables (program, 
statement, id, etc.) 

 Terminal symbols: concrete syntax that appears in programs 
(a, b, c, 0, 1, if, =, (, ), … 

 Meaning of  
      nonterminal ::= <sequence of terminals and nonterminals> 

 In a derivation, an instance of nonterminal can be replaced 
by the sequence of terminals and nonterminals on the right 
of the production 

 Often there are several productions for a nonterminal 
– can choose any in different parts of derivation 



Exercise: Derive some simple 
programs 
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program ::= statement | program statement 

statement ::= assignStmt | ifStmt 

assignStmt ::= id = expr ; 

ifStmt ::= if ( expr ) statement 

expr ::= id | int | expr + expr 

id ::= a | b | c | i | j | k | n | x | y | z 

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Alternative Notations 

 There are several syntax notations for 
productions in common use; all mean 
the same thing 

ifStmt ::= if ( expr ) statement 

ifStmt      if ( expr ) statement 

<ifStmt> ::= if ( <expr> ) <statement> 
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Parsing 

 Parsing: reconstruct the derivation 
(syntactic structure) of a program 

 In principle, a single recognizer could 
work directly from a concrete, 
character-by-character grammar 

 In practice this is never done 
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Parsing & Scanning 

 In real compilers the recognizer is split into 
two phases 

 Scanner: translate input characters to tokens 

 Also, report lexical errors like illegal characters and illegal 
symbols 

 Parser: read token stream and reconstruct the 
derivation 

Scanner Parser 
source tokens 
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Why Separate the Scanner 
and Parser? 

 Simplicity & Separation of Concerns 
 Scanner hides details from parser 

(comments, whitespace, input files, etc.) 
 Parser is easier to build; has simpler input 

stream (tokens) / narrow interface 

 Efficiency 
 Scanner recognizes regular expressions – 

proper subset of context free grammars 
 (But still often consumes a surprising amount 

of the compiler’s total execution time) 



But … 

 Not always possible to separate cleanly 

 Example: C/C++/Java type vs identifier  
 Parser would like to know which names are types 

and which are identifiers, but 

 Scanner doesn’t know how things are declared … 

 So we hack around it somehow… 
 Either use simpler grammar and disambiguate 

later, or communicate between scanner & parser 

 Engineering issue: try to keep interfaces as simple 
& clean as possible 
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Typical Tokens in 
Programming Languages 

 Operators & Punctuation 
 + - * / ( ) { } [ ] ; : :: < <= == = != ! … 

 Each of these is a distinct lexical class 

 Keywords 
 if  while  for  goto  return  switch  void  … 

 Each of these is also a distinct lexical class (not a string) 

 Identifiers 
 A single ID lexical class, but parameterized by actual id 

 Integer constants 
 A single INT lexical class, but parameterized by int value 

 Other constants, etc. 
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Principle of Longest Match 

 In most languages, the scanner should pick 
the longest possible string to make up the 
next token if there is a choice 

 Example 
return maybe != iffy; 

 should be recognized as 5 tokens 

 

  

 i.e., != is one token, not two; “iffy” is an ID, not 
IF followed by ID(fy) 

RETURN ID(maybe) NEQ ID(iffy) SCOLON 



Lexical Complications 

 Most modern languages are free-form 
 Layout doesn’t matter 

 Whitespace separates tokens 

 Alternatives 
 Fortran – line oriented 

 Haskell, Python – indentation and layout can imply 
grouping 

 And other confusions 
 In C++ or Java, is >> a shift operator or the end 

of two nested templates or generic classes? 
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Regular Expressions and FAs 

 The lexical grammar (structure) of most 
programming languages can be 
specified with regular expressions 

 (Sometimes a little cheating is needed) 

 Tokens can be recognized by a 
deterministic finite automaton 

 Can be either table-driven or built by hand 
based on lexical grammar 
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Regular Expressions 

 Defined over some alphabet Σ 

 For programming languages, alphabet is 
usually ASCII or Unicode 

 If re is a regular expression, L(re ) is 
the language (set of strings) generated 
by re 
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Fundamental REs 



re L(re ) Notes 

a { a } Singleton set, for each a in Σ 

ε { ε } Empty string 

{ } Empty language 
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Operations on REs 

 

 

 

 

 

 

 

 Precedence: * (highest), concatenation, | (lowest) 

 Parentheses can be used to group REs as needed 

re L(re ) Notes 

rs L(r)L(s) Concatenation 

r|s L(r)    L(s) Combination (union) 

r* L(r)* 0 or more occurrences 
(Kleene closure) 
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Abbreviations 

 The basic operations generate all possible regular 
expressions, but there are common abbreviations 
used for convenience.  Some examples: 

Abbr. Meaning Notes 

r+ (rr*) 1 or more occurrences 

r? (r | ε) 0 or 1 occurrence 

[a-z] (a|b|…|z) 1 character in given range 

[abxyz] (a|b|x|y|z) 1 of the given characters 
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Examples 

re Meaning 

+ single + character 

! single ! character 

= single = character 

!= 2 character sequence 

<= 2 character sequence 

xyzzy 5 character sequence 
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More Examples 

re Meaning 

[abc]+ 

[abc]* 

[0-9]+ 

[1-9][0-9]* 

[a-zA-Z][a-zA-Z0-9_]* 
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Abbreviations 

 Many systems allow abbreviations to 
make writing and reading definitions or 
specifications easier 

  name ::= re 

 

 Restriction: abbreviations may not be 
circular (recursive) either directly or 
indirectly (else would be non-regular) 
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Example 

 Possible syntax for numeric constants 
 digit ::= [0-9] 

 digits ::= digit+ 

 number ::= digits  ( . digits )? 

        ( [eE] (+ | -)? digits ) ? 

 

 How would you describe this set in English? 

 What are some examples of legal constants 
(strings) generated by number ? 



10/5/2011 © 2002-11 Hal Perkins & UW CSE B-26 

Recognizing REs 

 Finite automata can be used to 
recognize strings generated by regular 
expressions 

 Can build by hand or automatically 

 Reasonably straightforward, and can be 
done systematically 

 Tools like Lex, Flex, JFlex et seq do this 
automatically, given a set of REs 
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Finite State Automaton 

 A finite set of states 
 One marked as initial state 
 One or more marked as final states 
 States sometimes labeled or numbered 

 A set of transitions from state to state 
 Each labeled with symbol from Σ, or ε 

 Operate by reading input symbols (usually characters) 
 Transition can be taken if labeled with current symbol 
 ε-transition can be taken at any time 

 Accept when final state reached & no more input 
 Scanner uses a FSA as a subroutine – accept longest match each 

time called, even if more input; i.e., run the FSA from the current 
location in the input each time the scanner is called 

 Reject if no transition possible, or no more input and not in final 
state (DFA) 
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Example: FSA for “cat” 

a t c 
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DFA vs NFA 

 Deterministic Finite Automata (DFA) 
 No choice of which transition to take under any 

condition 

 No ε transitions (arcs) 

 Non-deterministic Finite Automata (NFA) 
 Choice of transition in at least one case 

 Accept if some way to reach a final state on given 
input 

 Reject if no possible way to final state 

 i.e., may need to guess right path or backtrack 
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FAs in Scanners 

 Want DFA for speed (no backtracking) 

 Conversion from regular expressions to 
NFA is easy 

 There is a well-defined procedure for 
converting a NFA to an equivalent DFA 
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From RE to NFA: base cases 

a 

ε 
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r s 

r s ε 
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r  | s 

r 

s ε ε 

ε ε 



10/5/2011 © 2002-11 Hal Perkins & UW CSE B-34 

r * 

r 

ε 

ε ε 



Exercise 

 Draw the NFA for:   b(at|ag) | bug 
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From NFA to DFA 

 Subset construction 
 Construct a DFA from the NFA, where each DFA state 

represents a set of NFA states 

 Key idea 
 The state of the DFA after reading some input is the set of 

all  NFA states that could have reached after reading the 
same input 

 Algorithm: example of a fixed-point computation 
 If NFA has n states, DFA has at most 2n states  

 => DFA is finite, can construct in finite # steps 

 Resulting DFA may have more states than needed 
 See books for construction and minimization details 



Exercise 

 Build DFA for b(at|ag)|bug, given the NFA 
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To Tokens  

 A scanner is a DFA that finds the next token each time it 
is called 

 Every “final” state of a DFA emits (returns) a token 

 Tokens are the internal compiler names for the lexemes 

== becomes equal 

(   becomes leftParen 

private becomes private 

 You choose the names 

 Also, there may be additional data … \r\n might count 

lines; all tokens might include line # 
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DFA => Code 

 Option 1: Implement by hand using procedures 

 one procedure for each token 

 each procedure reads one character 

 choices implemented using if and switch statements 

 Pros 

 straightforward to write 

 fast 

 Cons 

 a fair amount of tedious work 

 may have subtle differences from the language specification 
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DFA => Code [continued] 

 Option 1a: Like option 1, but structured as a single 
procedure with multiple return points 

 choices implemented using if and switch statements 

 Pros 

 also straightforward to write 

 faster 

 Cons 

 a fair amount of tedious work 

 may have subtle differences from the language specification 
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DFA => code [continued] 

 Option 2: use tool to generate table driven scanner 
 Rows: states of DFA 
 Columns: input characters 
 Entries: action 

 Go to next state 
 Accept token, go to start state 
 Error 

 Pros 
 Convenient 
 Exactly matches specification, if tool generated 

 Cons 
 “Magic” 
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DFA => code [continued] 

 Option 2a: use tool to generate scanner 
 Transitions embedded in the code 
 Choices use conditional statements, loops 

 Pros 
 Convenient 
 Exactly matches specification, if tool generated 

 Cons 
 “Magic” 
 Lots of code – big but potentially quite fast 

 Would never write something like this by hand, but can 
generate it easily enough 
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Example: DFA for hand-
written scanner 

 Idea: show a hand-written DFA for some 
typical programming language constructs 
 Then use to construct hand-written scanner 

 Setting: Scanner is called whenever the parser 
needs a new token 
 Scanner stores current position in input 
 From there, use a DFA to recognize the longest 

possible input sequence that makes up a token 
and return that token; save updated position for 
next time 

 Disclaimer: Example for illustration only – you’ll 
use tools for the course project 
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Scanner DFA Example (1) 

0 

Accept LPAREN 
( 

2 

Accept RPAREN 
) 

3 

whitespace 
or comments 

Accept SCOLON 
; 

4 

Accept EOF 
end of input 

1 
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Scanner DFA Example (2) 

Accept NEQ 
! 

6 

Accept NOT 7 

5 
= 

[other ] 

Accept LEQ 
< 

9 

Accept LESS 10 

8 
= 

[other ] 
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Scanner DFA Example (3) 

[0-9] 

Accept INT 12 

11 

[other ] 

[0-9] 
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 Strategies for handling identifiers vs keywords 
 Hand-written scanner: look up identifier-like things in table of 

keywords to classify (good application of perfect hashing) 

 Machine-generated scanner: generate DFA will appropriate 
transitions to recognize keywords 

 Lots ’o states, but efficient (no extra lookup step) 

Scanner DFA Example (4) 

[a-zA-Z] 

Accept ID or keyword 14 

13 

[other ] 

[a-zA-Z0-9_] 
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Implementing a Scanner by 
Hand – Token Representation 

 A token is a simple, tagged structure 
public class Token { 

 public int kind;             // token’s lexical class 

 public int intVal; // integer value if class = INT 

 public String id;  // actual identifier if class = ID 

 // lexical classes 

 public static final int EOF = 0; // “end of file” token 

 public static final int ID   = 1; // identifier, not keyword 

 public static final int INT = 2; // integer 

 public static final int LPAREN = 4; 

 public static final int SCOLN   = 5; 

 public static final int WHILE   = 6; 

 // etc. etc. etc. … 
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Simple Scanner Example 

// global state and methods 
 
static char nextch; // next unprocessed input character 
 
// advance to next input char 
void getch() { … } 
 
// skip whitespace and comments 
void skipWhitespace() { … } 
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Scanner getToken() method 

// return next input token 
public Token getToken() { 
  Token result; 
 
  skipWhiteSpace(); 
 
  if (no more input) { 
 result = new Token(Token.EOF); return result; 
  } 
 
  switch(nextch) { 
 case '(': result = new Token(Token.LPAREN); getch(); return result;  
 case ‘)': result = new Token(Token.RPAREN); getch(); return result; 
 case ‘;': result = new Token(Token.SCOLON); getch(); return result; 
  
 // etc. … 
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getToken() (2) 

 case '!': // ! or != 
     getch(); 
     if (nextch == '=') { 
       result = new Token(Token.NEQ); getch(); return result; 
     } else { 
       result = new Token(Token.NOT); return result; 
     } 
   
 case '<': // < or <= 
     getch(); 
     if (nextch == '=') { 
       result = new Token(Token.LEQ); getch(); return result; 
     } else { 
       result = new Token(Token.LESS); return result; 
     } 
 // etc. … 
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getToken() (3) 

  case '0': case '1': case '2': case '3': case '4':  
  case '5': case '6': case '7': case '8': case '9':  
     // integer constant 
     String num = nextch; 
     getch(); 
     while (nextch is a digit) { 
        num = num + nextch; getch(); 
     } 
     result = new Token(Token.INT, Integer(num).intValue()); 
     return result; 
 … 
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getToken() (4) 

 case 'a': … case 'z': 
 case 'A': … case 'Z':  // id or keyword 
  string s = nextch; getch(); 
  while (nextch is a letter, digit, or underscore) { 
     s = s + nextch; getch(); 
  } 
  if (s is a keyword) { 
     result = new Token(keywordTable.getKind(s)); 
  } else { 
     result = new Token(Token.ID, s); 
  } 
  return result; 



MiniJava Scanner Generation 

 We’ll use the jflex tool to automatically 
create a scanner from a specification file,  

 We’ll use the CUP tool to automatically 
create a parser from a specification file,  

 Token class is shared by jflex and CUP. 
Lexical classes are listed in CUP’s input file 
and it generates the token class definition. 

 Details in next week’s section 
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Coming Attractions 

 First homework: paper exercises on 
regular expressions, automata, etc. 

 Then: first part of the compiler 
assignment – the scanner 

 Next topic: parsing 

 Will do LR parsing first – we need this for 
the project, then LL (recursive-descent) 
parsing, which you should also know. 
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