
10/5/2011 © 2002-11 Hal Perkins & UW CSE B-1

CSE 401 – Compilers

Languages, Automata, Regular
Expressions & Scanners

Hal Perkins
Autumn 2011

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-2

Agenda

 Quick review of basic concepts of
formal grammars

 Regular expressions

 Lexical specification of programming
languages

 Using finite automata to recognize
regular expressions

 Scanners and Tokens

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-3

Programming Language Specs

 Since the 1960s, the syntax of every
significant programming language has
been specified by a formal grammar

 First done in 1959 with BNF (Backus-Naur
Form) used to specify ALGOL 60 syntax

 Borrowed from the linguistics community
(Chomsky)

Formal Languages & Automata
Theory (a review in one slide)

 Alphabet: a finite set of symbols and characters
 String: a finite, possibly empty sequence of symbols from

an alphabet
 Language: a set of strings (possibly empty or infinite)
 Finite specifications of (possibly infinite) languages

 Automaton – a recognizer; a machine that accepts all strings
in a language (and rejects all other strings)

 Grammar – a generator; a system for producing all strings in
the language (and no other strings)

 A particular language may be specified by many different
grammars and automata

 A grammar or automaton specifies only one language

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-4

Language (Chomsky) hierarchy:
quick reminder

 Regular (Type-3) languages are
specified by regular
expressions/grammars and
finite automata (FSAs)

 Context-free (Type-2)
languages are specified by
context-free grammars and
pushdown automata (PDAs)

 Context-sensitive (Type-1)
languages … aren’t too
important

 Recursively-enumerable (Type-
0) languages are specified by
general grammars and Turing
machines

Turing

CSL

CFL

Regular

One distinction among the levels is what
is allowed on the right hand and on the
left hand sides of grammar rules

10/5/2011 5

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-6

Example:
Grammar for a Tiny Language

program ::= statement | program statement

statement ::= assignStmt | ifStmt

assignStmt ::= id = expr ;

ifStmt ::= if (expr) statement

expr ::= id | int | expr + expr

id ::= a | b | c | i | j | k | n | x | y | z

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-7

Productions

 The rules of a grammar are called productions
 Rules contain

 Nonterminal symbols: grammar variables (program,
statement, id, etc.)

 Terminal symbols: concrete syntax that appears in programs
(a, b, c, 0, 1, if, =, (,), …

 Meaning of
 nonterminal ::= <sequence of terminals and nonterminals>

 In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

 Often there are several productions for a nonterminal
– can choose any in different parts of derivation

Exercise: Derive some simple
programs

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-8

program ::= statement | program statement

statement ::= assignStmt | ifStmt

assignStmt ::= id = expr ;

ifStmt ::= if (expr) statement

expr ::= id | int | expr + expr

id ::= a | b | c | i | j | k | n | x | y | z

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-9

Alternative Notations

 There are several syntax notations for
productions in common use; all mean
the same thing

ifStmt ::= if (expr) statement

ifStmt if (expr) statement

<ifStmt> ::= if (<expr>) <statement>

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-10

Parsing

 Parsing: reconstruct the derivation
(syntactic structure) of a program

 In principle, a single recognizer could
work directly from a concrete,
character-by-character grammar

 In practice this is never done

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-11

Parsing & Scanning

 In real compilers the recognizer is split into
two phases

 Scanner: translate input characters to tokens

 Also, report lexical errors like illegal characters and illegal
symbols

 Parser: read token stream and reconstruct the
derivation

Scanner Parser
source tokens

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-12

Why Separate the Scanner
and Parser?

 Simplicity & Separation of Concerns
 Scanner hides details from parser

(comments, whitespace, input files, etc.)
 Parser is easier to build; has simpler input

stream (tokens) / narrow interface

 Efficiency
 Scanner recognizes regular expressions –

proper subset of context free grammars
 (But still often consumes a surprising amount

of the compiler’s total execution time)

But …

 Not always possible to separate cleanly

 Example: C/C++/Java type vs identifier
 Parser would like to know which names are types

and which are identifiers, but

 Scanner doesn’t know how things are declared …

 So we hack around it somehow…
 Either use simpler grammar and disambiguate

later, or communicate between scanner & parser

 Engineering issue: try to keep interfaces as simple
& clean as possible

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-13

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-14

Typical Tokens in
Programming Languages

 Operators & Punctuation
 + - * / () { } [] ; : :: < <= == = != ! …

 Each of these is a distinct lexical class

 Keywords
 if while for goto return switch void …

 Each of these is also a distinct lexical class (not a string)

 Identifiers
 A single ID lexical class, but parameterized by actual id

 Integer constants
 A single INT lexical class, but parameterized by int value

 Other constants, etc.

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-15

Principle of Longest Match

 In most languages, the scanner should pick
the longest possible string to make up the
next token if there is a choice

 Example
return maybe != iffy;

 should be recognized as 5 tokens

 i.e., != is one token, not two; “iffy” is an ID, not
IF followed by ID(fy)

RETURN ID(maybe) NEQ ID(iffy) SCOLON

Lexical Complications

 Most modern languages are free-form
 Layout doesn’t matter

 Whitespace separates tokens

 Alternatives
 Fortran – line oriented

 Haskell, Python – indentation and layout can imply
grouping

 And other confusions
 In C++ or Java, is >> a shift operator or the end

of two nested templates or generic classes?

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-16

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-17

Regular Expressions and FAs

 The lexical grammar (structure) of most
programming languages can be
specified with regular expressions

 (Sometimes a little cheating is needed)

 Tokens can be recognized by a
deterministic finite automaton

 Can be either table-driven or built by hand
based on lexical grammar

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-18

Regular Expressions

 Defined over some alphabet Σ

 For programming languages, alphabet is
usually ASCII or Unicode

 If re is a regular expression, L(re) is
the language (set of strings) generated
by re

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-19

Fundamental REs



re L(re) Notes

a { a } Singleton set, for each a in Σ

ε { ε } Empty string

{ } Empty language

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-20

Operations on REs

 Precedence: * (highest), concatenation, | (lowest)

 Parentheses can be used to group REs as needed

re L(re) Notes

rs L(r)L(s) Concatenation

r|s L(r) L(s) Combination (union)

r* L(r)* 0 or more occurrences
(Kleene closure)



10/5/2011 © 2002-11 Hal Perkins & UW CSE B-21

Abbreviations

 The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Some examples:

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-22

Examples

re Meaning

+ single + character

! single ! character

= single = character

!= 2 character sequence

<= 2 character sequence

xyzzy 5 character sequence

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-23

More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-24

Abbreviations

 Many systems allow abbreviations to
make writing and reading definitions or
specifications easier

 name ::= re

 Restriction: abbreviations may not be
circular (recursive) either directly or
indirectly (else would be non-regular)

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-25

Example

 Possible syntax for numeric constants
 digit ::= [0-9]

 digits ::= digit+

 number ::= digits (. digits)?

 ([eE] (+ | -)? digits) ?

 How would you describe this set in English?

 What are some examples of legal constants
(strings) generated by number ?

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-26

Recognizing REs

 Finite automata can be used to
recognize strings generated by regular
expressions

 Can build by hand or automatically

 Reasonably straightforward, and can be
done systematically

 Tools like Lex, Flex, JFlex et seq do this
automatically, given a set of REs

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-27

Finite State Automaton

 A finite set of states
 One marked as initial state
 One or more marked as final states
 States sometimes labeled or numbered

 A set of transitions from state to state
 Each labeled with symbol from Σ, or ε

 Operate by reading input symbols (usually characters)
 Transition can be taken if labeled with current symbol
 ε-transition can be taken at any time

 Accept when final state reached & no more input
 Scanner uses a FSA as a subroutine – accept longest match each

time called, even if more input; i.e., run the FSA from the current
location in the input each time the scanner is called

 Reject if no transition possible, or no more input and not in final
state (DFA)

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-28

Example: FSA for “cat”

a t c

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-29

DFA vs NFA

 Deterministic Finite Automata (DFA)
 No choice of which transition to take under any

condition

 No ε transitions (arcs)

 Non-deterministic Finite Automata (NFA)
 Choice of transition in at least one case

 Accept if some way to reach a final state on given
input

 Reject if no possible way to final state

 i.e., may need to guess right path or backtrack

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-30

FAs in Scanners

 Want DFA for speed (no backtracking)

 Conversion from regular expressions to
NFA is easy

 There is a well-defined procedure for
converting a NFA to an equivalent DFA

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-31

From RE to NFA: base cases

a

ε

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-32

r s

r s ε

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-33

r | s

r

s ε ε

ε ε

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-34

r *

r

ε

ε ε

Exercise

 Draw the NFA for: b(at|ag) | bug

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-35

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-36

From NFA to DFA

 Subset construction
 Construct a DFA from the NFA, where each DFA state

represents a set of NFA states

 Key idea
 The state of the DFA after reading some input is the set of

all NFA states that could have reached after reading the
same input

 Algorithm: example of a fixed-point computation
 If NFA has n states, DFA has at most 2n states

 => DFA is finite, can construct in finite # steps

 Resulting DFA may have more states than needed
 See books for construction and minimization details

Exercise

 Build DFA for b(at|ag)|bug, given the NFA

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-37

To Tokens

 A scanner is a DFA that finds the next token each time it
is called

 Every “final” state of a DFA emits (returns) a token

 Tokens are the internal compiler names for the lexemes

== becomes equal

(becomes leftParen

private becomes private

 You choose the names

 Also, there may be additional data … \r\n might count

lines; all tokens might include line #

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-38

DFA => Code

 Option 1: Implement by hand using procedures

 one procedure for each token

 each procedure reads one character

 choices implemented using if and switch statements

 Pros

 straightforward to write

 fast

 Cons

 a fair amount of tedious work

 may have subtle differences from the language specification

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-39

DFA => Code [continued]

 Option 1a: Like option 1, but structured as a single
procedure with multiple return points

 choices implemented using if and switch statements

 Pros

 also straightforward to write

 faster

 Cons

 a fair amount of tedious work

 may have subtle differences from the language specification

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-40

DFA => code [continued]

 Option 2: use tool to generate table driven scanner
 Rows: states of DFA
 Columns: input characters
 Entries: action

 Go to next state
 Accept token, go to start state
 Error

 Pros
 Convenient
 Exactly matches specification, if tool generated

 Cons
 “Magic”

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-41

DFA => code [continued]

 Option 2a: use tool to generate scanner
 Transitions embedded in the code
 Choices use conditional statements, loops

 Pros
 Convenient
 Exactly matches specification, if tool generated

 Cons
 “Magic”
 Lots of code – big but potentially quite fast

 Would never write something like this by hand, but can
generate it easily enough

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-42

Example: DFA for hand-
written scanner

 Idea: show a hand-written DFA for some
typical programming language constructs
 Then use to construct hand-written scanner

 Setting: Scanner is called whenever the parser
needs a new token
 Scanner stores current position in input
 From there, use a DFA to recognize the longest

possible input sequence that makes up a token
and return that token; save updated position for
next time

 Disclaimer: Example for illustration only – you’ll
use tools for the course project

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-43

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-44

Scanner DFA Example (1)

0

Accept LPAREN
(

2

Accept RPAREN
)

3

whitespace
or comments

Accept SCOLON
;

4

Accept EOF
end of input

1

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-45

Scanner DFA Example (2)

Accept NEQ
!

6

Accept NOT 7

5
=

[other]

Accept LEQ
<

9

Accept LESS 10

8
=

[other]

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-46

Scanner DFA Example (3)

[0-9]

Accept INT 12

11

[other]

[0-9]

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-47

 Strategies for handling identifiers vs keywords
 Hand-written scanner: look up identifier-like things in table of

keywords to classify (good application of perfect hashing)

 Machine-generated scanner: generate DFA will appropriate
transitions to recognize keywords

 Lots ’o states, but efficient (no extra lookup step)

Scanner DFA Example (4)

[a-zA-Z]

Accept ID or keyword 14

13

[other]

[a-zA-Z0-9_]

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-48

Implementing a Scanner by
Hand – Token Representation

 A token is a simple, tagged structure
public class Token {

 public int kind; // token’s lexical class

 public int intVal; // integer value if class = INT

 public String id; // actual identifier if class = ID

 // lexical classes

 public static final int EOF = 0; // “end of file” token

 public static final int ID = 1; // identifier, not keyword

 public static final int INT = 2; // integer

 public static final int LPAREN = 4;

 public static final int SCOLN = 5;

 public static final int WHILE = 6;

 // etc. etc. etc. …

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-49

Simple Scanner Example

// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-50

Scanner getToken() method

// return next input token
public Token getToken() {
 Token result;

 skipWhiteSpace();

 if (no more input) {
 result = new Token(Token.EOF); return result;
 }

 switch(nextch) {
 case '(': result = new Token(Token.LPAREN); getch(); return result;
 case ‘)': result = new Token(Token.RPAREN); getch(); return result;
 case ‘;': result = new Token(Token.SCOLON); getch(); return result;

 // etc. …

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-51

getToken() (2)

 case '!': // ! or !=
 getch();
 if (nextch == '=') {
 result = new Token(Token.NEQ); getch(); return result;
 } else {
 result = new Token(Token.NOT); return result;
 }

 case '<': // < or <=
 getch();
 if (nextch == '=') {
 result = new Token(Token.LEQ); getch(); return result;
 } else {
 result = new Token(Token.LESS); return result;
 }
 // etc. …

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-52

getToken() (3)

 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 // integer constant
 String num = nextch;
 getch();
 while (nextch is a digit) {
 num = num + nextch; getch();
 }
 result = new Token(Token.INT, Integer(num).intValue());
 return result;
 …

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-53

getToken() (4)

 case 'a': … case 'z':
 case 'A': … case 'Z': // id or keyword
 string s = nextch; getch();
 while (nextch is a letter, digit, or underscore) {
 s = s + nextch; getch();
 }
 if (s is a keyword) {
 result = new Token(keywordTable.getKind(s));
 } else {
 result = new Token(Token.ID, s);
 }
 return result;

MiniJava Scanner Generation

 We’ll use the jflex tool to automatically
create a scanner from a specification file,

 We’ll use the CUP tool to automatically
create a parser from a specification file,

 Token class is shared by jflex and CUP.
Lexical classes are listed in CUP’s input file
and it generates the token class definition.

 Details in next week’s section

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-54

Coming Attractions

 First homework: paper exercises on
regular expressions, automata, etc.

 Then: first part of the compiler
assignment – the scanner

 Next topic: parsing

 Will do LR parsing first – we need this for
the project, then LL (recursive-descent)
parsing, which you should also know.

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-55

