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Agenda 

 Quick review of basic concepts of 
formal grammars 

 Regular expressions 

 Lexical specification of programming 
languages 

 Using finite automata to recognize 
regular expressions 

 Scanners and Tokens 
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Programming Language Specs 

 Since the 1960s, the syntax of every 
significant programming language has 
been specified by a formal grammar 

 First done in 1959 with BNF (Backus-Naur 
Form) used to specify ALGOL 60 syntax 

 Borrowed from the linguistics community 
(Chomsky) 



Formal Languages & Automata 
Theory (a review in one slide) 

 Alphabet: a finite set of symbols and characters 
 String: a finite, possibly empty sequence of symbols from 

an alphabet 
 Language: a set of strings (possibly empty or infinite) 
 Finite specifications of (possibly infinite) languages 

 Automaton – a recognizer; a machine that accepts all strings 
in a language (and rejects all other strings) 

 Grammar – a generator; a system for producing all strings in 
the language (and no other strings) 

 A particular language may be specified by many different 
grammars and automata 

 A grammar or automaton specifies only one language 
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Language (Chomsky) hierarchy: 
quick reminder 

 Regular (Type-3) languages are 
specified by regular 
expressions/grammars and 
finite automata (FSAs) 

 Context-free (Type-2) 
languages are specified by 
context-free grammars and 
pushdown automata (PDAs) 

 Context-sensitive (Type-1) 
languages … aren’t too 
important 

 Recursively-enumerable (Type-
0) languages are specified by 
general grammars and Turing 
machines 

Turing 

CSL 

CFL 

Regular 

One distinction among the levels is what 
is allowed on the right hand and on the 
left hand sides of grammar rules 
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Example: 
Grammar for a Tiny Language 

program ::= statement | program statement 

statement ::= assignStmt | ifStmt 

assignStmt ::= id = expr ; 

ifStmt ::= if ( expr ) statement 

expr ::= id | int | expr + expr 

id ::= a | b | c | i | j | k | n | x | y | z 

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Productions 

 The rules of a grammar are called productions 
 Rules contain 

 Nonterminal symbols: grammar variables (program, 
statement, id, etc.) 

 Terminal symbols: concrete syntax that appears in programs 
(a, b, c, 0, 1, if, =, (, ), … 

 Meaning of  
      nonterminal ::= <sequence of terminals and nonterminals> 

 In a derivation, an instance of nonterminal can be replaced 
by the sequence of terminals and nonterminals on the right 
of the production 

 Often there are several productions for a nonterminal 
– can choose any in different parts of derivation 



Exercise: Derive some simple 
programs 
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program ::= statement | program statement 

statement ::= assignStmt | ifStmt 

assignStmt ::= id = expr ; 

ifStmt ::= if ( expr ) statement 

expr ::= id | int | expr + expr 

id ::= a | b | c | i | j | k | n | x | y | z 

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Alternative Notations 

 There are several syntax notations for 
productions in common use; all mean 
the same thing 

ifStmt ::= if ( expr ) statement 

ifStmt      if ( expr ) statement 

<ifStmt> ::= if ( <expr> ) <statement> 
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Parsing 

 Parsing: reconstruct the derivation 
(syntactic structure) of a program 

 In principle, a single recognizer could 
work directly from a concrete, 
character-by-character grammar 

 In practice this is never done 
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Parsing & Scanning 

 In real compilers the recognizer is split into 
two phases 

 Scanner: translate input characters to tokens 

 Also, report lexical errors like illegal characters and illegal 
symbols 

 Parser: read token stream and reconstruct the 
derivation 

Scanner Parser 
source tokens 
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Why Separate the Scanner 
and Parser? 

 Simplicity & Separation of Concerns 
 Scanner hides details from parser 

(comments, whitespace, input files, etc.) 
 Parser is easier to build; has simpler input 

stream (tokens) / narrow interface 

 Efficiency 
 Scanner recognizes regular expressions – 

proper subset of context free grammars 
 (But still often consumes a surprising amount 

of the compiler’s total execution time) 



But … 

 Not always possible to separate cleanly 

 Example: C/C++/Java type vs identifier  
 Parser would like to know which names are types 

and which are identifiers, but 

 Scanner doesn’t know how things are declared … 

 So we hack around it somehow… 
 Either use simpler grammar and disambiguate 

later, or communicate between scanner & parser 

 Engineering issue: try to keep interfaces as simple 
& clean as possible 
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Typical Tokens in 
Programming Languages 

 Operators & Punctuation 
 + - * / ( ) { } [ ] ; : :: < <= == = != ! … 

 Each of these is a distinct lexical class 

 Keywords 
 if  while  for  goto  return  switch  void  … 

 Each of these is also a distinct lexical class (not a string) 

 Identifiers 
 A single ID lexical class, but parameterized by actual id 

 Integer constants 
 A single INT lexical class, but parameterized by int value 

 Other constants, etc. 
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Principle of Longest Match 

 In most languages, the scanner should pick 
the longest possible string to make up the 
next token if there is a choice 

 Example 
return maybe != iffy; 

 should be recognized as 5 tokens 

 

  

 i.e., != is one token, not two; “iffy” is an ID, not 
IF followed by ID(fy) 

RETURN ID(maybe) NEQ ID(iffy) SCOLON 



Lexical Complications 

 Most modern languages are free-form 
 Layout doesn’t matter 

 Whitespace separates tokens 

 Alternatives 
 Fortran – line oriented 

 Haskell, Python – indentation and layout can imply 
grouping 

 And other confusions 
 In C++ or Java, is >> a shift operator or the end 

of two nested templates or generic classes? 
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Regular Expressions and FAs 

 The lexical grammar (structure) of most 
programming languages can be 
specified with regular expressions 

 (Sometimes a little cheating is needed) 

 Tokens can be recognized by a 
deterministic finite automaton 

 Can be either table-driven or built by hand 
based on lexical grammar 
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Regular Expressions 

 Defined over some alphabet Σ 

 For programming languages, alphabet is 
usually ASCII or Unicode 

 If re is a regular expression, L(re ) is 
the language (set of strings) generated 
by re 
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Fundamental REs 



re L(re ) Notes 

a { a } Singleton set, for each a in Σ 

ε { ε } Empty string 

{ } Empty language 
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Operations on REs 

 

 

 

 

 

 

 

 Precedence: * (highest), concatenation, | (lowest) 

 Parentheses can be used to group REs as needed 

re L(re ) Notes 

rs L(r)L(s) Concatenation 

r|s L(r)    L(s) Combination (union) 

r* L(r)* 0 or more occurrences 
(Kleene closure) 


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Abbreviations 

 The basic operations generate all possible regular 
expressions, but there are common abbreviations 
used for convenience.  Some examples: 

Abbr. Meaning Notes 

r+ (rr*) 1 or more occurrences 

r? (r | ε) 0 or 1 occurrence 

[a-z] (a|b|…|z) 1 character in given range 

[abxyz] (a|b|x|y|z) 1 of the given characters 
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Examples 

re Meaning 

+ single + character 

! single ! character 

= single = character 

!= 2 character sequence 

<= 2 character sequence 

xyzzy 5 character sequence 
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More Examples 

re Meaning 

[abc]+ 

[abc]* 

[0-9]+ 

[1-9][0-9]* 

[a-zA-Z][a-zA-Z0-9_]* 
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Abbreviations 

 Many systems allow abbreviations to 
make writing and reading definitions or 
specifications easier 

  name ::= re 

 

 Restriction: abbreviations may not be 
circular (recursive) either directly or 
indirectly (else would be non-regular) 
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Example 

 Possible syntax for numeric constants 
 digit ::= [0-9] 

 digits ::= digit+ 

 number ::= digits  ( . digits )? 

        ( [eE] (+ | -)? digits ) ? 

 

 How would you describe this set in English? 

 What are some examples of legal constants 
(strings) generated by number ? 
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Recognizing REs 

 Finite automata can be used to 
recognize strings generated by regular 
expressions 

 Can build by hand or automatically 

 Reasonably straightforward, and can be 
done systematically 

 Tools like Lex, Flex, JFlex et seq do this 
automatically, given a set of REs 
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Finite State Automaton 

 A finite set of states 
 One marked as initial state 
 One or more marked as final states 
 States sometimes labeled or numbered 

 A set of transitions from state to state 
 Each labeled with symbol from Σ, or ε 

 Operate by reading input symbols (usually characters) 
 Transition can be taken if labeled with current symbol 
 ε-transition can be taken at any time 

 Accept when final state reached & no more input 
 Scanner uses a FSA as a subroutine – accept longest match each 

time called, even if more input; i.e., run the FSA from the current 
location in the input each time the scanner is called 

 Reject if no transition possible, or no more input and not in final 
state (DFA) 
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Example: FSA for “cat” 

a t c 
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DFA vs NFA 

 Deterministic Finite Automata (DFA) 
 No choice of which transition to take under any 

condition 

 No ε transitions (arcs) 

 Non-deterministic Finite Automata (NFA) 
 Choice of transition in at least one case 

 Accept if some way to reach a final state on given 
input 

 Reject if no possible way to final state 

 i.e., may need to guess right path or backtrack 
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FAs in Scanners 

 Want DFA for speed (no backtracking) 

 Conversion from regular expressions to 
NFA is easy 

 There is a well-defined procedure for 
converting a NFA to an equivalent DFA 
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From RE to NFA: base cases 

a 

ε 
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r s 

r s ε 
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r  | s 

r 

s ε ε 

ε ε 
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r * 

r 

ε 

ε ε 



Exercise 

 Draw the NFA for:   b(at|ag) | bug 
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From NFA to DFA 

 Subset construction 
 Construct a DFA from the NFA, where each DFA state 

represents a set of NFA states 

 Key idea 
 The state of the DFA after reading some input is the set of 

all  NFA states that could have reached after reading the 
same input 

 Algorithm: example of a fixed-point computation 
 If NFA has n states, DFA has at most 2n states  

 => DFA is finite, can construct in finite # steps 

 Resulting DFA may have more states than needed 
 See books for construction and minimization details 



Exercise 

 Build DFA for b(at|ag)|bug, given the NFA 
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To Tokens  

 A scanner is a DFA that finds the next token each time it 
is called 

 Every “final” state of a DFA emits (returns) a token 

 Tokens are the internal compiler names for the lexemes 

== becomes equal 

(   becomes leftParen 

private becomes private 

 You choose the names 

 Also, there may be additional data … \r\n might count 

lines; all tokens might include line # 

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-38 



DFA => Code 

 Option 1: Implement by hand using procedures 

 one procedure for each token 

 each procedure reads one character 

 choices implemented using if and switch statements 

 Pros 

 straightforward to write 

 fast 

 Cons 

 a fair amount of tedious work 

 may have subtle differences from the language specification 
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DFA => Code [continued] 

 Option 1a: Like option 1, but structured as a single 
procedure with multiple return points 

 choices implemented using if and switch statements 

 Pros 

 also straightforward to write 

 faster 

 Cons 

 a fair amount of tedious work 

 may have subtle differences from the language specification 
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DFA => code [continued] 

 Option 2: use tool to generate table driven scanner 
 Rows: states of DFA 
 Columns: input characters 
 Entries: action 

 Go to next state 
 Accept token, go to start state 
 Error 

 Pros 
 Convenient 
 Exactly matches specification, if tool generated 

 Cons 
 “Magic” 
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DFA => code [continued] 

 Option 2a: use tool to generate scanner 
 Transitions embedded in the code 
 Choices use conditional statements, loops 

 Pros 
 Convenient 
 Exactly matches specification, if tool generated 

 Cons 
 “Magic” 
 Lots of code – big but potentially quite fast 

 Would never write something like this by hand, but can 
generate it easily enough 
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Example: DFA for hand-
written scanner 

 Idea: show a hand-written DFA for some 
typical programming language constructs 
 Then use to construct hand-written scanner 

 Setting: Scanner is called whenever the parser 
needs a new token 
 Scanner stores current position in input 
 From there, use a DFA to recognize the longest 

possible input sequence that makes up a token 
and return that token; save updated position for 
next time 

 Disclaimer: Example for illustration only – you’ll 
use tools for the course project 

10/5/2011 © 2002-11 Hal Perkins & UW CSE B-43 



10/5/2011 © 2002-11 Hal Perkins & UW CSE B-44 

Scanner DFA Example (1) 

0 

Accept LPAREN 
( 

2 

Accept RPAREN 
) 

3 

whitespace 
or comments 

Accept SCOLON 
; 

4 

Accept EOF 
end of input 

1 
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Scanner DFA Example (2) 

Accept NEQ 
! 

6 

Accept NOT 7 

5 
= 

[other ] 

Accept LEQ 
< 

9 

Accept LESS 10 

8 
= 

[other ] 
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Scanner DFA Example (3) 

[0-9] 

Accept INT 12 

11 

[other ] 

[0-9] 
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 Strategies for handling identifiers vs keywords 
 Hand-written scanner: look up identifier-like things in table of 

keywords to classify (good application of perfect hashing) 

 Machine-generated scanner: generate DFA will appropriate 
transitions to recognize keywords 

 Lots ’o states, but efficient (no extra lookup step) 

Scanner DFA Example (4) 

[a-zA-Z] 

Accept ID or keyword 14 

13 

[other ] 

[a-zA-Z0-9_] 
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Implementing a Scanner by 
Hand – Token Representation 

 A token is a simple, tagged structure 
public class Token { 

 public int kind;             // token’s lexical class 

 public int intVal; // integer value if class = INT 

 public String id;  // actual identifier if class = ID 

 // lexical classes 

 public static final int EOF = 0; // “end of file” token 

 public static final int ID   = 1; // identifier, not keyword 

 public static final int INT = 2; // integer 

 public static final int LPAREN = 4; 

 public static final int SCOLN   = 5; 

 public static final int WHILE   = 6; 

 // etc. etc. etc. … 
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Simple Scanner Example 

// global state and methods 
 
static char nextch; // next unprocessed input character 
 
// advance to next input char 
void getch() { … } 
 
// skip whitespace and comments 
void skipWhitespace() { … } 
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Scanner getToken() method 

// return next input token 
public Token getToken() { 
  Token result; 
 
  skipWhiteSpace(); 
 
  if (no more input) { 
 result = new Token(Token.EOF); return result; 
  } 
 
  switch(nextch) { 
 case '(': result = new Token(Token.LPAREN); getch(); return result;  
 case ‘)': result = new Token(Token.RPAREN); getch(); return result; 
 case ‘;': result = new Token(Token.SCOLON); getch(); return result; 
  
 // etc. … 
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getToken() (2) 

 case '!': // ! or != 
     getch(); 
     if (nextch == '=') { 
       result = new Token(Token.NEQ); getch(); return result; 
     } else { 
       result = new Token(Token.NOT); return result; 
     } 
   
 case '<': // < or <= 
     getch(); 
     if (nextch == '=') { 
       result = new Token(Token.LEQ); getch(); return result; 
     } else { 
       result = new Token(Token.LESS); return result; 
     } 
 // etc. … 
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getToken() (3) 

  case '0': case '1': case '2': case '3': case '4':  
  case '5': case '6': case '7': case '8': case '9':  
     // integer constant 
     String num = nextch; 
     getch(); 
     while (nextch is a digit) { 
        num = num + nextch; getch(); 
     } 
     result = new Token(Token.INT, Integer(num).intValue()); 
     return result; 
 … 
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getToken() (4) 

 case 'a': … case 'z': 
 case 'A': … case 'Z':  // id or keyword 
  string s = nextch; getch(); 
  while (nextch is a letter, digit, or underscore) { 
     s = s + nextch; getch(); 
  } 
  if (s is a keyword) { 
     result = new Token(keywordTable.getKind(s)); 
  } else { 
     result = new Token(Token.ID, s); 
  } 
  return result; 



MiniJava Scanner Generation 

 We’ll use the jflex tool to automatically 
create a scanner from a specification file,  

 We’ll use the CUP tool to automatically 
create a parser from a specification file,  

 Token class is shared by jflex and CUP. 
Lexical classes are listed in CUP’s input file 
and it generates the token class definition. 

 Details in next week’s section 
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Coming Attractions 

 First homework: paper exercises on 
regular expressions, automata, etc. 

 Then: first part of the compiler 
assignment – the scanner 

 Next topic: parsing 

 Will do LR parsing first – we need this for 
the project, then LL (recursive-descent) 
parsing, which you should also know. 
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