CSE 401 - Compilers

Parsing \& Context-Free Grammars Hal Perkins
 Autumn 2011

Agenda for Today

- Parsing overview
- Context free grammars
- Ambiguous grammars
- Reading: Cooper \& Torczon 3.1-3.2
- Dragon book is also particularly strong on grammars and languages

Syntactic Analysis / Parsing

- Goal: Convert token stream to abstract syntax tree
- Abstract syntax tree (AST):
- Captures the structural features of the program
- Primary data structure for next phases of compilation
- Plan
- Study how context-free grammars specify syntax
- Study algorithms for parsing and building ASTs

Context-free Grammars

- The syntax of most programming languages can be specified by a context-free grammar (CGF)
- Compromise between
- REs: can't nest or specify recursive structure
- General grammars: too powerful, undecidable
- Context-free grammars are a sweet spot
- Powerful enough to describe nesting, recursion
- Easy to parse; but also allow restrictions for speed
- Not perfect
- Cannot capture semantics, as in "variable must be declared" - requires later semantic pass
- Can be ambiguous

Derivations and Parse Trees

- Derivation: a sequence of expansion steps, beginning with a start symbol and leading to a sequence of terminals
- Parsing: inverse of derivation
- Given a sequence of terminals (a\k\a tokens) want to recover the nonterminals and structure
- Can represent derivation as a parse tree, that is, a concrete syntax tree

Example Derivation

program
$w \rightarrow a=1$; if $(a+1) \quad b=2 ;$

Parsing

- Parsing: Given a grammar G and a sentence w in $L(G)$, traverse the derivation (parse tree) for w in some standard order and do something useful at each node
- The tree might not be produced explicitly, but the control flow of the parser corresponds to a traversal

"Standard Order"

- For practical reasons we want the parser to be deterministic (no backtracking), and we want to examine the source program from left to right.
- (i.e., parse the program in linear time in the order it appears in the source file)

Common Orderings

- Top-down
- Start with the root
- Traverse the parse tree depth-first, left-to-right (leftmost derivation)
- LL(k), recursive-descent
- Bottom-up
- Start at leaves and build up to the root
- Effectively a rightmost derivation in reverse(!)
- LR(k) and subsets (LALR(k), SLR(k), etc.)

"Something Useful"

- At each point (node) in the traversal, perform some semantic action
- Construct nodes of full parse tree (rare)
- Construct abstract syntax tree (AST) (common)
- Construct linear, lower-level representation (often produced by traversing initial AST in later phases of production compilers)
- Generate target code on the fly (used in 1-pass compiler; not common in production compilers)
- Can't generate great code in one pass, - but useful if you need a quick 'n dirty working compiler

Context-Free Grammars

- Formally, a grammar G is a tuple $\langle N, \Sigma, P, S\rangle$ where
- N a finite set of non-terminal symbols
- Σ a finite set of terminal symbols
- P a finite set of productions
- A subset of $N \times(N \cup \Sigma)^{*}$
- S the start symbol, a distinguished element of N
- If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production

Standard Notations

- a, b, c elements of Σ
- w, x, y, z elements of Σ^{*}
- A, B, C elements of N
- X, Y, Z elements of $N \cup \Sigma$
$-\alpha, \beta, \gamma$ elements of $(N \cup \Sigma)^{*}$
- $\mathrm{A} \rightarrow \alpha$ or $\mathrm{A}::=\alpha$ if $\langle\mathrm{A}, \alpha\rangle$ in P

Derivation Relations (1)

- $\alpha \mathrm{A} \gamma=>\alpha \beta \gamma$ iff $\mathrm{A}::=\beta$ in P
- derives
- A =>* α if there is a chain of productions starting with A that generates α
- transitive closure

Derivation Relations (2)

- w $\mathrm{A} \gamma=>_{\text {Im }} \mathrm{w} \beta \gamma$ iff $\mathrm{A}::=\beta$ in P
- derives leftmost
- α A w $=>_{r m} \alpha \beta$ w iff $A::=\beta$ in P
- derives rightmost
- We will only be interested in leftmost and rightmost derivations - not random orderings

Languages

- For A in $N, L(\mathrm{~A})=\left\{\mathrm{w} \mid \mathrm{A}=>^{*} \mathrm{w}\right\}$
- If S is the start symbol of grammar G, define $L(G)=L(S)$
- Nonterminal on left of first rule is taken to be the start symbol if one is not specified explicitly

Reduced Grammars

- Grammar G is reduced iff for every production $\mathrm{A}::=\alpha$ in G there is a derivation

$$
S=>^{*} x A z=>x \alpha z=>^{*} x y z
$$

- i.e., no production is useless
- Convention: we will use only reduced grammars

Ambiguity

- Grammar G is unambiguous iff every w in $L(G)$ has a unique leftmost (or rightmost) derivation
- Fact: unique leftmost or unique rightmost implies the other
- A grammar without this property is ambiguous
- Note that other grammars that generate the same language may be unambiguous
- We need unambiguous grammars for parsing

Example: Ambiguous Grammar for Arithmetic Expressions

$$
\begin{aligned}
& \text { expr }::=\text { expr }+ \text { expr } \mid \text { expr - expr } \\
& \text { | expr* expr | expr/ expr|int } \\
& \text { int }::=0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

- Exercise: show that this is ambiguous
- How? Show two different leftmost or rightmost derivations for the same string
- Equivalently: show two different parse trees for the same string

expr ::= expr + expr | expr- expr
 | expr* expr | expr/ expr| int int $::=0|1| 2|3| 4|5| 6|7| 8 \mid 9$
 Example (cont)

- Give a leftmost derivation of $2+3 * 4$ and show the parse tree

expr ::= expr + expr | expr - expr
 | expr* expr | expr/ expr | int
 int ::=0|1|2|3|4|5|6|7|8|9
 Example (cont)

- Give a different leftmost derivation of $2+3 * 4$ and show the parse tree

expr::= expr + expr | expr- expr
 | expr* expr | expr/ expr | int int ::=0|1|2|3|4|5|6|7|8|9
 Another example

- Give two different derivations of 5+6+7

What's going on here?

- The grammar has no notion of precedence or associatively
- Traditional solution
- Create a non-terminal for each level of precedence
- Isolate the corresponding part of the grammar
- Force the parser to recognize higher precedence subexpressions first
- Use left- or right-recursion for left- or rightassociative operators (non-associative operators are not recursive)

Classic Expression Grammar (first used in ALGOL 60)

expr $::=$ expr + term | expr- term | term term ::= term * factor \mid term | factor \mid factor factor ::= int| (expr)
int $::=0|1| 2|3| 4|5| 6 \mid 7$

$$
\text { expr }::=\text { expr }+ \text { term } \mid \text { expr }- \text { term } \mid \text { term }
$$

$$
\text { term }::=\text { term } * \text { factor } \mid \text { term } / \text { factor } \mid \text { factor }
$$

$$
\text { factor }::=\text { int } \mid \text { (expr })
$$

$$
\text { int }::=0|1| 2|3| 4|5| 6 \mid 7
$$

Check: Derive $2+3$ * 4

$$
\begin{aligned}
& \text { expr }::=\text { expr }+ \text { term } \mid \text { expr }- \text { term } \mid \text { term } \\
& \text { term }::=\text { term } * \text { factor } \mid \text { term } / \text { factor } \mid \text { factor } \\
& \text { factor }::=\text { int } \mid(\text { expr }) \\
& \text { int }::=0|1| 2|3| 4|5| 6 \mid 7
\end{aligned}
$$

Check: Derive $5+6+7$

- Note interaction between left- vs right-recursive rules and resulting associativity
expr $::=$ expr + term \mid expr- term \mid term
term $::=$ term $*$ factor \mid term $/$ factor \mid factor factor $::=$ int \mid (expr)
int $::=0|1| 2|3| 4|5| 6 \mid 7$

Check: Derive $5+(6+7)$

Another Classic Example

- Grammar for conditional statements stmt ::= if (cond) stmt | if (cond) stmt else stmt
- Exercise: show that this is ambiguous
- How?

```
stmt ::= if ( cond ) stmt
    | if ( cond) stmt else stmt
```


One Derivation

if (cond) if (cond) stmt else stmt

```
stmt ::= if ( cond ) stmt
    | if ( cond) stmt else stmt
```


Another Derivation

if (cond) if (cond) stmt else stmt

Solving "if" Ambiguity

- Fix the grammar to separate if statements with else clause and if statements with no else
- Done in Java reference grammar
- Adds lots of non-terminals
- or, Change the language
- But it'd better be ok to do this
- or, Use some ad-hoc rule in the parser
- "else matches closest unpaired if"

Resolving Ambiguity with Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt MatchedStmt ::=...|
if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= if (Expr) Stmt |
if (Expr) MatchedStmt else UnmatchedStmt

- formal, no additional rules beyond syntax
- sometimes obscures original grammar

Check

> Stmt ::= MatchedStmt | UnmatchedStmt MatchedStmt ::= ... |
if (Expr) MatchedStmt else MatchedStmt UnmatchedStmt ::= if (Expr) Stmt |
if (Expr) MatchedStmt else UnmatchedStmt

if (cond) if (cond) stmt else stmt

Resolving Ambiguity with Grammar (2)

- If you can (re-)design the language, avoid the problem entirely

```
Stmt ::= ... |
if Expr then Stmt end |
if Expr then Stmt else Stmt end
```

- formal, clear, elegant
- allows sequence of Stmts in then and else branches, no $\{$, $\}$ needed
- extra end required for every if
(But maybe this is a good idea anyway?)

Parser Tools and Operators

- Most parser tools can cope with ambiguous grammars
- Makes life simpler if used with discipline
- Typically one can specify operator precedence \& associativity
- Allows simpler, ambiguous grammar with fewer nonterminals as basis for generated parser, without creating problems

Parser Tools and Ambiguous Grammars

- Possible rules for resolving other problems
- Earlier productions in the grammar preferred to later ones
- Longest match used if there is a choice
- Parser tools normally allow for this
- But be sure that what the tool does is really what you want

Coming Attractions

- Next topic: LR parsing
- Continue reading ch. 3

