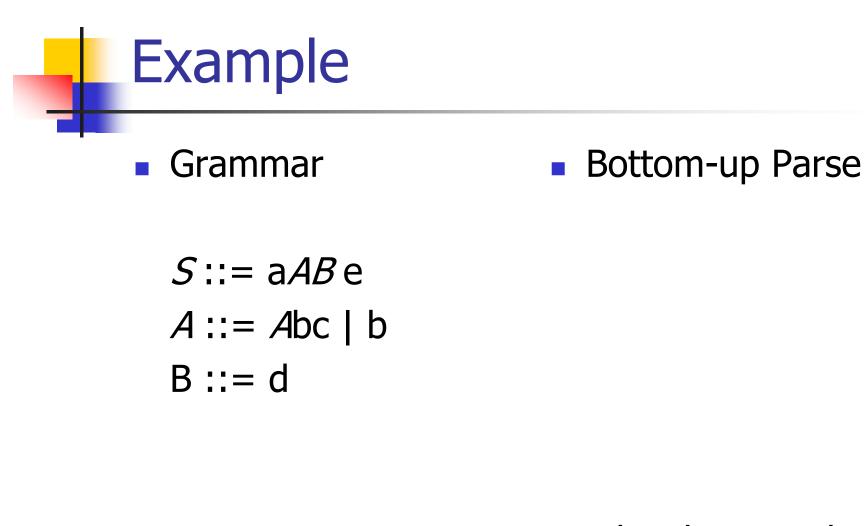
CSE 401 – Compilers

LR Parsing Hal Perkins Autumn 2011

Agenda

- LR Parsing
- Table-driven Parsers
- Parser States
- Shift-Reduce and Reduce-Reduce conflicts


LR(1) Parsing

We'll look at LR(1) parsers

- Left to right scan, Rightmost derivation, 1 symbol lookahead
- Almost all practical programming languages have an LR(1) grammar
- LALR(1), SLR(1), etc. subsets of LR(1)
 - LALR(1) can parse most real languages, tables are more compact, and is used by YACC/Bison/ CUP/etc.

Bottom-Up Parsing

- Idea: Read the input left to right
- Whenever we've matched the right hand side of a production, reduce it to the appropriate non-terminal and add that non-terminal to the parse tree
- The upper edge of this partial parse tree is known as the *frontier*

a b b c d e

Details

- The bottom-up parser reconstructs a reverse rightmost derivation
- Given the rightmost derivation

$$S =>\beta_1 =>\beta_2 =>\dots =>\beta_{n-2} =>\beta_{n-1} =>\beta_n = W$$

the parser will first discover $\beta_{n-1} = >\beta_n$, then $\beta_{n-2} = >\beta_{n-1}$, etc.

- Parsing terminates when
 - β_1 reduced to *S* (start symbol, success), or
 - No match can be found (syntax error)

How Do We Parse with This?

- Key: given what we've already seen and the next input symbol, decide what to do.
- Choices:
 - Perform a reduction
 - Look ahead further
- Can reduce $A => \beta$ if both of these hold:
 - $A =>\beta$ is a valid production
 - $A = >\beta$ is a step in *this* rightmost derivation
- This is known as a *shift-reduce* parser

Sentential Forms

- If S =>* α, the string α is called a *sentential* form of the of the grammar
- In the derivation $S =>\beta_1 =>\beta_2 =>... =>\beta_{n-2} =>\beta_{n-1} =>\beta_n = W$ each of the β_i are sentential forms
- A sentential form in a rightmost derivation is called a right-sentential form (similarly for leftmost and left-sentential)

Handles

 Informally, a substring of the tree frontier that matches the right side of a production

- Even if A::=β is a production, β is a handle only if it matches the frontier at a point where A::=β was used in that derivation
- β may appear in many other places in the frontier without being a handle for that particular production

Handles (cont.)

Formally, a *handle* of a right-sentential form γ is a production A ::= β and a position in γ where β may be replaced by A to produce the previous rightsentential form in the rightmost derivation of γ

Handle Examples

- In the derivation
 - *S* => a*AB*e => a*A*de => a*A*bcde => abbcde
 - abbcde is a right sentential form whose handle is A::=b at position 2
 - aAbcde is a right sentential form whose handle is A::=Abc at position 4
 - Note: some books take the left of the match as the position

Implementing Shift-Reduce Parsers

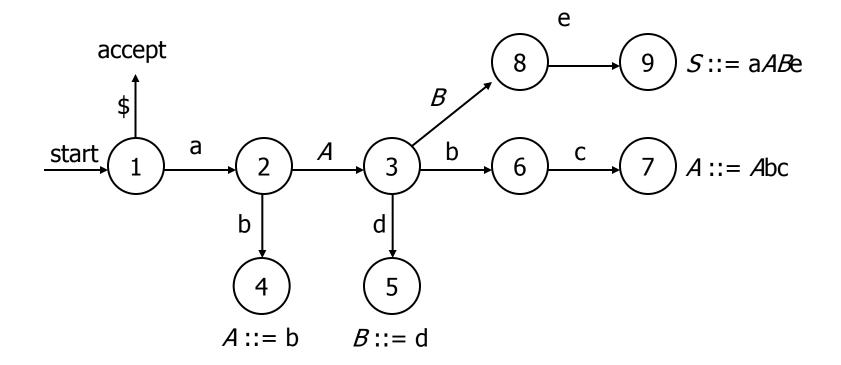
Key Data structures

- A stack holding the frontier of the tree
- A string with the remaining input

Shift-Reduce Parser Operations

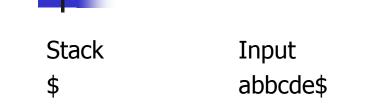
Reduce – if the top of the stack is the right side of a handle A::=β, pop the right side β and push the left side A

- Shift push the next input symbol onto the stack
- Accept announce success
- Error syntax error discovered

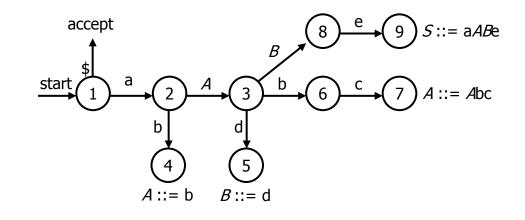

Shift-Reduce Example
Shift-Reduce Example

$$S::= aABe A::= Abc | b B::= d$$

Stack Input Action
 $$ abbcde$ shift$


How Do We Automate This?

- Def. Viable prefix a prefix of a rightsentential form that can appear on the stack of the shift-reduce parser
 - Equivalent: a prefix of a right-sentential form that does not continue past the rightmost handle of that sentential form
- Idea: Construct a DFA to recognize viable prefixes given the stack and remaining input
 - Perform reductions when we recognize them


S ::= aABe $A ::= Abc \mid b$ B ::= d

S :::= a*AB*e *A* :::= *A*bc | b *B* :::= d

Trace

Observations

- Way too much backtracking
 - We want the parser to run in time proportional to the length of the input
- Where the heck did this DFA come from anyway?
 - From the underlying grammar
 - We'll defer construction details for now

Avoiding DFA Rescanning

- Observation: after a reduction, the contents of the stack are the same as before except for the new non-terminal on top
 - Scanning the stack will take us through the same transitions as before until the last one
 - If we record state numbers on the stack, we can go directly to the appropriate state when we pop the right hand side of a production from the stack

Stack

Change the stack to contain pairs of states and symbols from the grammar

- \$s₀ X₁ s₁ X₂ s₂ ... X_n s_n
- State s₀ represents the accept state
 (Not always added depends on particular presentation)

 Observation: in an actual parser, only the state numbers need to be pushed, since they implicitly contain the symbol information, but for explanations it's clearer to use both.

Encoding the DFA in a Table

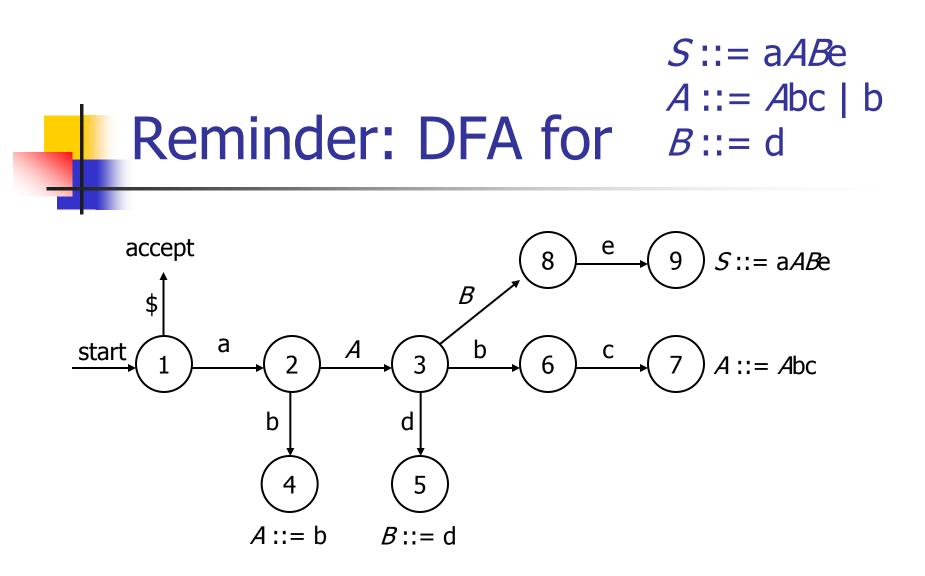
- A shift-reduce parser's DFA can be encoded in two tables
 - One row for each state
 - action table encodes what to do given the current state and the next input symbol
 - goto table encodes the transitions to take after a reduction

Actions (1)

 Given the current state and input symbol, the main possible actions are

- si shift the input symbol and state i onto the stack (i.e., shift and move to state i)
- rj reduce using grammar production j
 - The production number tells us how many <symbol, state> pairs to pop off the stack

Actions (2)


Other possible *action* table entries
 accept

- blank no transition syntax error
 - A LR parser will detect an error as soon as possible on a left-to-right scan
 - A real compiler needs to produce an error message, recover, and continue parsing when this happens

When a reduction is performed, <symbol, state> pairs are popped from the stack revealing a state uncovered_s on the top of the stack

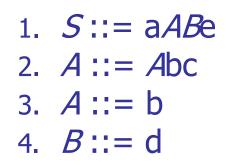
 goto[*uncovered_s*, *A*] is the new state to push on the stack when reducing production *A* ::= β (after popping β and revealing state *uncovered_s* on top)

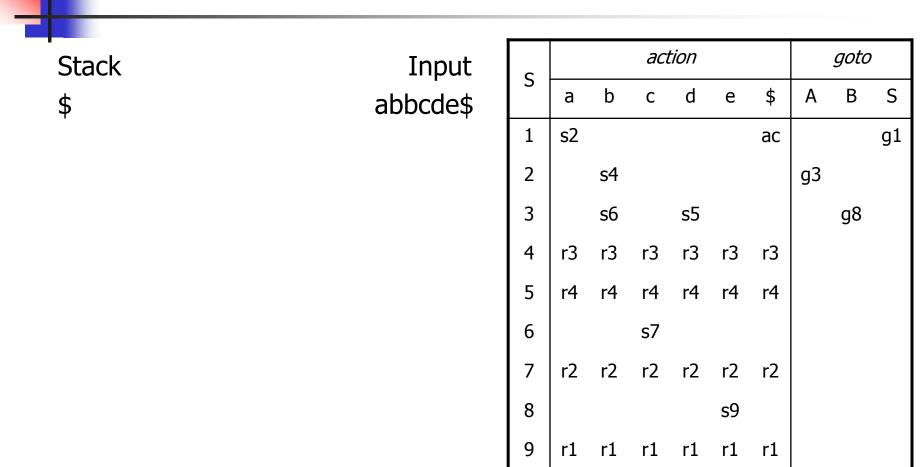
Goto

1. S ::= aABe2. A ::= Abc3. A ::= b4. B ::= d

State	action						goto		
	а	b	С	d	е	\$	А	В	S
1	s2					асс			g1
2		s4					g3		
3		s6		s5				g8	
4	r3	r3	r3	r3	r3	r3			
5	r4	r4	r4	r4	r4	r4			
6			s7						
7	r2	r2	r2	r2	r2	r2			
8					s9				
9	r1	r1	r1	r1	r1	r1			

LR Parsing Algorithm (1)


```
word = scanner.getToken();
while (true) {
   s = top of stack;
   if (action[s, word] = si) {
     push word; push i (state);
     word = scanner.getToken();
   } else if (action[s, word] = r_j) {
      pop 2 * length of right side of
          production j (2*|\beta|);
     uncovered_s = top of stack;
      push left side A of production j;
     push state goto[uncovered_s, A];
    }
```


```
} else if (action[s, word] = accept ) {
    return;
```

```
} else {
```

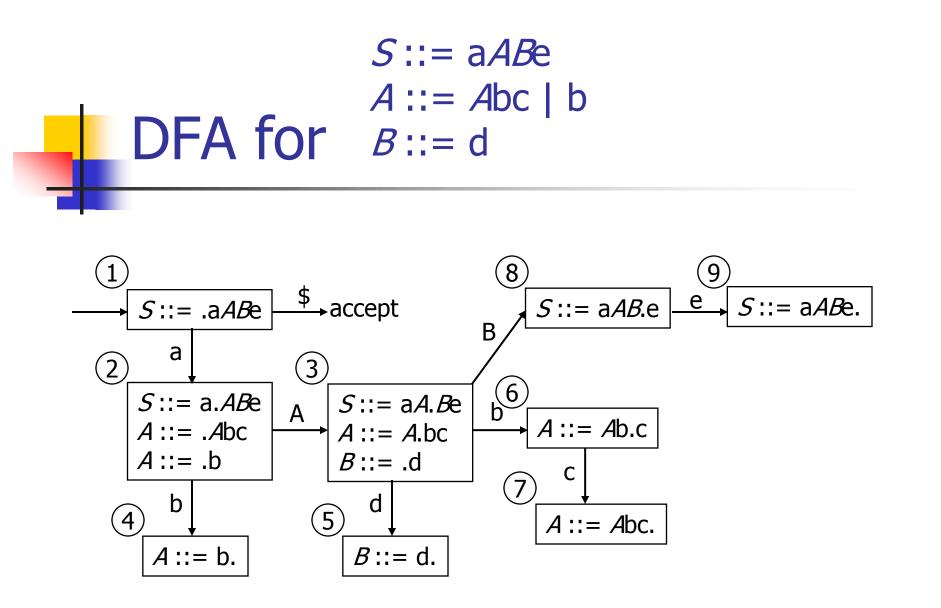
// no entry in action tablereport syntax error;halt or attempt recovery;

```
}
```


Example

LR States

Idea is that each state encodes


- The set of all possible productions that we could be looking at, given the current state of the parse, and
- Where we are in the right hand side of each of those productions

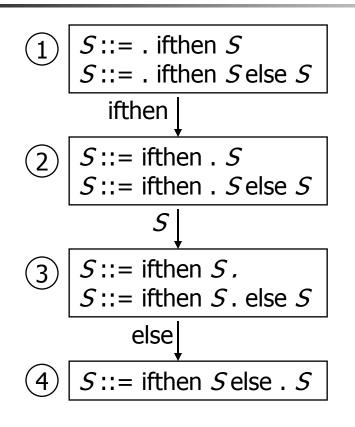
Items

- An *item* is a production with a dot in the right hand side
- Example: Items for production A ::= XY

$$A ::= .XY$$
$$A ::= X.Y$$
$$A ::= XY.$$

 Idea: The dot represents a position in the production

Problems with Grammars


 Grammars can cause problems when constructing a LR parser

- Shift-reduce conflicts
- Reduce-reduce conflicts

Shift-Reduce Conflicts

- Situation: both a shift and a reduce are possible at a given point in the parse (equivalently: in a particular state of the DFA)
- Classic example: if-else statement
 S ::= ifthen S | ifthen S else S

1. S ::= if then S**Parser States for** 2. S ::= if then S else S

- State 3 has a shiftreduce conflict
 - Can shift past else into state 4 (s4)
 - Can reduce (r1)
 S ::= ifthen S

(Note: other S ::= . ifthen items not included in states 2-4 to save space)

Solving Shift-Reduce Conflicts

Fix the grammar

- Done in Java reference grammar, others
- Use a parse tool with a "longest match" rule – i.e., if there is a conflict, choose to shift instead of reduce
 - Does exactly what we want for if-else case
 - Guideline: a few shift-reduce conflicts are fine, but be sure they do what you want

Reduce-Reduce Conflicts

- Situation: two different reductions are possible in a given state
- Contrived example

$$S ::= A$$
$$S ::= B$$
$$A ::= x$$
$$B ::= x$$

1.
$$S ::= A$$
2. $S ::= B$ 3. $A ::= x$ 4. $B ::= x$

$$\begin{array}{c|c} 1 & S ::= .A \\ S ::= .B \\ A ::= .x \\ B ::= .x \end{array}$$

$$\begin{array}{c|c} x \\ \hline A ::= x \\ B ::= x \\ B ::= x \end{array}$$

 State 2 has a reduce-reduce conflict (r3, r4)

Handling Reduce-Reduce Conflicts

- These normally indicate a serious problem with the grammar.
- Fixes
 - Use a different kind of parser generator that takes lookahead information into account when constructing the states
 - Most practical tools use this information
 - Fix the grammar

Another Reduce-Reduce Conflict

Suppose the grammar separates arithmetic and boolean expressions expr ::= aexp | bexp aexp ::= aexp * aident | aident bexp ::= bexp && bident | bident aident ::= id bident ::= id

This will create a reduce-reduce conflict

Covering Grammars

- A solution is to merge *aident* and *bident* into a single non-terminal (or use *id* in place of *aident* and *bident* everywhere they appear)
- This is a covering grammar
 - Includes some programs that are not generated by the original grammar
 - Use the type checker or other static semantic analysis to weed out illegal programs later

Coming Attractions

- Constructing LR tables
 - We'll present a simple version (SLR(0)) in lecture, then talk about extending it to LR(1)
- LL parsers and recursive descent
- Continue reading ch. 3