
11/12/2011 © 2002-11 Hal Perkins & UW CSE M-1

CSE 401 – Compilers

x86-64, Running MiniJava,

Basic Code Generation and Bootstrapping

Hal Perkins

Autumn 2011

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-2

Agenda

 x86-64: what’s new?

 GNU (AT&T) assembler

 Then enough to get a working project:

 A very basic code generation strategy

 Interfacing with the bootstrap program

 Implementing the system interface

Some x86-64 References
(Links on course web)

 x86-64 Machine-Level Programming
 Earlier version of sec. 3.13 of Computer Systems:

A Programmer’s Perspective 2nd ed. by Bryant &
O’Hallaron (CSE 351 textbook)

 From www.x86-64.org:
 System V Application Binary Interface AMD64

Architecture Processor Supplement
 Gentle Introduction to x86-64 Assembly

 x86-64 Instructions and ABI
 Handout for University of Chicago CMSC 22620,

Spring 2009, by John Reppy

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-3

Compiler Target

 Compiler output is an assembly-
language file that is linked to the “real”
main program written in C

 Lets the C library set up the stack, heap;
handle I/O, etc.

 Target code is Linux x86-64 gcc asm

 Examples on these slides use this notation

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-4

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-5

 The GNU assembler uses AT&T syntax. Main
differences:

Intel vs. GNU Assembler

Intel/Microsoft AT&T/GNU as

Operand order: op a,b a = a op b (dst first) b = a op b (dst last)

Memory address [baseregister+offset] offset(baseregister)

Instruction mnemonics mov, add, push, … movl, addl, pushl [operand size
is added to end]

Register names eax, ebx, ebp, esp, … %eax, %ebx, %ebp, %esp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

x86-64

 Designed by AMD and announced in 1999-
2000. First processors in 2003.

 Intel bet on Itanium for 64-bit processors,
but just in case had a not-so-secret project
to add AMD64 to the Pentium 4

 Announced in 2004 (first called IA-32e, then
EM64T, finally Intel 64)

 Generic term is now x86-64

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-6

x86-64 Main features

 16 64-bit general registers; 64-bit integers (but
int typically defaults to 32 bits; long is 64 bits)

 64-bit address space; pointers are 8 bytes

 8 additional SSE registers (total 16); used
instead of x87 floating point by default

 Register-based function call conventions

 Additional addressing modes (pc relative)

 32-bit legacy mode

 Some pruning of old features

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-7

x86-64 registers

 16 64-bit general registers

 %rax, %rbx, %rcx, %rdx, %rsi, %rdi,
%rbp, %rsp, %r8-%r15

 Registers can be used as 64-bit ints or
pointers, or 32-bit ints (upper half set
to 0 automatically)

 Also possible to reference low-order 16-
and 8-bit chunks

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-8

x86-64 Function Calls

 First 6 arguments in registers, rest on the stack

 int/pointer result returned in %rax

 Stack frame should be 16-byte aligned when
call instruction is executed (i.e., %rsp value is
0xddddddddddddddd0; pushed return address
has that address minus 8)

 We’ll use %rbp as frame pointer, but compilers
often adjust %rsp once on function entry and
reference locals relative to %rsp using a fixed-
size stack frame

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-9

x86-Register Usage

 %rax – function result

 Arguments 1-6 passed in these registers
 %rdi, %rsi, %rdx, %rcx, %r8, %r9

 “this” pointer is first argument, in %rdi

 %rsp – stack pointer; value must be 8-
byte aligned always and 16-byte aligned
when calling a function

 %rfp – frame pointer (optional use)
 We’ll use it

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-10

x86-64 Register Save
Conventions

 A called function must preserve these
registers (or save/restore them if it
wants to use them)

 %rbx, %rbp, %r12-%r15

 %rsp isn’t on the “callee save list”, but
needs to be properly restored for return

 All other registers can change across a
function call

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-11

x86-64 Function Call

 Caller places up to 6 arguments in
registers, rest on stack, then executes call
instruction (which pushes 8-byte return
address)

 On entry, called function prologue is like
the 32-bit version:
 pushq %rbp

 movq %rsp,%rbp

 subq $framesize,%rsp

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-12

x86-64 Function Return

 Called function puts result in %rax (if any)
and restores any callee-save registers if
needed

 Called function returns with:
 movq %rbp,%rsp # or use leave instead of
 popq %rbp # movq/popq
 ret
 Same logic as 32-bit

 If caller allocated space for arguments it
deallocates as needed

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-13

The Nice Thing About
Standards…

 The above is the System V/AMD64 ABI
convention (used by Linux, OS X)

 Microsoft’s x64 calling conventions are slightly
different (sigh…)
 First four parameters in registers %rcx, %rdx,

%r8, %r9; rest on the stack

 Stack frame needs to include empty space for
called function to save values passed in parameter
registers if desired

 Not relevant for us, but worth being aware of it

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-14

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-15

Running MiniJava Programs

 To run a MiniJava program

 Space needs to be allocated for a stack
and a heap

 %rsp and other registers need to have
sensible initial values

 We need some way to allocate storage
(new) and communicate with the outside
world

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-16

Bootstraping from C

 Idea: take advantage of the existing C
runtime library

 Use a small C main program to call the
MiniJava main method as if it were a C
function

 C’s standard library provides the execution
environment and we can call C functions from
compiled code for I/O, malloc, etc.

Assembler File Format

 GNU syntax is roughly this (sample code will be
provided with codegen phase of the project)

.text # code segment

.globl asm_main # start of compiled static main
;; generated code # repeat .code/.data as needed

asm_main: # start of compiled “main”
 …

.data
;; generated method tables # repeat .text/.data as
needed
…
end

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-17

External Names

 In a Linux environment, an external
symbol is used as-is (xyzzy)

 In Windows and OS X, an external
symbol xyzzy is written in asm code as
_xyzzy (leading underscore)

 Adapt to whatever environment you’re
using – but what you turn in should run
on attu using the Linux conventions

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-18

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-19

Generating .asm Code

 Suggestion: isolate the actual compiler output
operations in a handful of routines
 Modularity & saves some typing

 Possibilities
 // write code string s to .asm output

 void gen(String s) { … }

 // write “op src,dst” to .asm output

 void genbin(String op, String src, String dst) { … }

 // write label L to .asm output as “L:”

 void genLabel(String L) { … }

 A handful of these methods should do it

A Simple Code Generation
Strategy

 Goal: quick ‘n dirty correct code, optimize
later if time

 Traverse AST primarily in execution order
and emit code during the traversal
 Visitor may traverse the tree in ad-hoc ways

depending on sequence that parts need to
appear in the code

 Treat the x86 as a 1-register machine with
a stack for additional intermediate values

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-20

(The?) Simplifying Assumption

 Store all values (reference, int, boolean)
in 64-bit quadwords

 Natural size for 64-bit pointers, i.e., object
references (variables of class types)

 C’s “long” size for integers

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-21

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-22

x86 as a Stack Machine

 Idea: Use x86-64 stack for expression evaluation with
%rax as the “top” of the stack

 Invariant: Whenever an expression (or part of one) is
evaluated at runtime, the generated code leaves the
result in %rax

 If a value needs to be preserved while another
expression is evaluated, push %rax, evaluate, then
pop when first value is needed
 Remember: always pop what you push

 Will produce lots of redundant, but correct, code

 Examples below follow code shape examples, but
with some details about where code generation fits

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-23

Example: Generate Code for
Constants and Identifiers

 Integer constants, say 17

 gen(movq $17,%rax)

 leaves value in %rax

 Local variables (any type – int, bool,
reference)

 gen(movq offset(%rbp),%rax)

Example: Generate Code for
exp1 + exp1

 Visit exp1
 generate code to evaluate exp1 with result in %rax

 gen(pushq %rax)
 push exp1 onto stack

 Visit exp2
 generate code for exp2; result in %rax

 gen(popq %rdx)
 pop left argument into %rdx; clean up stack

 gen(addq %rdx,%rax)
 perform the addition; result in %rax

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-24

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-25

Example: var = exp; (1)

 Assuming that var is a local variable

 Visit node for exp

 Generates code that leaves the result of
evaluating exp in %rax

 gen(movq %rax,offset_of_variable(%rbp))

Example: var = exp; (2)

 If var is a more complex expression
(object or array reference, for example)
 visit var

 gen(pushq %rax)
 push reference to variable or object containing

variable onto stack

 visit exp – leaves rhs value in %rax

 gen(popq %rdx)

 gen(movq %rax,appropriate_offset(%rdx))

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-26

Example: Generate Code for
obj.f(e1,e2,…en)

 In principal the code should work like this:
 Visit obj

 leaves reference to object in %rax

 gen(movq %rax,rdi)
 “this” pointer is first argument

 Visit e1, e2, …, en. For each argument,
 gen(movq %rax,correct_argument_register)

 generate code to load method table pointer
located at 0(%rdi) into register like %rax

 generate call instruction with indirect jump

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-27

Method Call Complications

 Big one: code to evaluate any argument
might clobber argument registers (i.e.,
method call in some parameter value)
 Possible strategy to cope on next slides, but

better solutions would be welcome

 Not quite so bad: what if a method has
more than 6 parameters?
 Let’s punt that one and restrict the number of

parameters to the number of parameter
registers
 Looks like the test programs are all ok here

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-28

Method Calls in Parameters

 Suggestion to avoid trouble:

 Evaluate parameters and push them on the
stack

 Right before the call instruction, pop the
parameters into the correct registers

 Or leave the parameters in storage and copy
them into registers, then deallocate after return

 But….

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-29

Stack Alignment (1)

 Above idea hack works provided we don’t call a
method while an odd number of parameter
values are pushed on the stack!
 (violates 16-byte alignment on method call…)

 We have a similar problem if an odd number of
intermediate values are pushed on the stack
when we call a function in the middle of
evaluating an expression

 (But we may get away with it if it only involves
calls to our generated, not library, code)

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-30

Stack Alignment (2)

 Workable solution: keep a counter in the
code generator of how much has been
pushed on the stack. If needed,
gen(pushq %eax) to align the stack before
generating a call instruction

 Another solution: make stack frame big
enough and use movq instead of pushq to
store arguments and temporaries
 Will need some extra bookkeeping to allocate

space for arguments and temporaries

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-31

Sigh…

 Multiple registers for method arguments
is a big win compared to pushing on the
stack, but complicates our life since we
do not have a fancy register allocator

 better ideas for handling x86-64
function calls in MiniJava are most
welcome

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-32

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-33

Code Gen for Method
Definitions

 Generate label for method
 Classname$methodname:

 Generate method prologue
 Push rbp, copy rsp to rbp, subtract frame size from

rsp

 Visit statements in order
 Method epilogue is normally generated as part

of each return statement (next)
 In MiniJava the return is generated after

visiting the method body to generate its code

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-34

Example: return exp;

 Visit exp; leaves result in %rax where it
should be

 Generate method epilogue to unwind
the stack frame; end with ret
instruction

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-35

Control Flow: Unique Labels

 Needed: a String-valued method that
returns a different label each time it is
called (e.g., L1, L2, L3, …)
 Variation: a set of methods that generate

different kinds of labels for different
constructs (can really help readability of
the generated code)
 (while1, while2, while3, …; if1, if2, …; else1,

else2, …; fi1, fi2, … .)

Control Flow: Tests

 Recall that the context for compiling a
boolean expression is

 Label or address of jump target

 Whether to jump if true or false

 So the visitor for a boolean expression
should receive this information from the
parent node

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-36

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-37

Example: while(exp) body

 Assuming we want the test at the
bottom of the generated loop…

 gen(jmp testLabel)

 gen(bodyLabel:)

 visit body

 gen(testLabel:)

 visit exp (condition) with target=bodyLabel
and sense=“jump if true”

Example: exp1 < exp2

 Similar to other binary operators
 Difference: context is a target label and

whether to jump if true or false
 Code

 visit exp1
 gen(pushq %rax)
 visit exp2
 gen(popq %rdx)
 gen(cmpq %rdx,%rax)
 gen(condjump targetLabel)

 appropriate conditional jump depending on sense of test

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-38

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-39

Boolean Operators

 && (and || if you include it)

 Create label needed to skip around the two
parts of the expression

 Generate subexpressions with appropriate
target labels and conditions

 !exp

 Generate exp with same target label, but
reverse the sense of the condition

Join Points

 Loops and conditional statements have join points where
execution paths merge

 Generated code must ensure that machine state will be
consistent regardless of which path is taken to reach a
join point
 i.e., the paths through an if-else statement must not leave a

different number of words pushed onto the stack
 If we want a particular value in a particular register at a join

point, both paths must put it there, or we need to generate
additional code to move the value to the correct register

 With a simple 1-accumulator model of code generation,
this should generally be true without needing extra work;
with better use of registers this becomes an issue

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-40

Bootstrap Program

 The bootstrap is a tiny C program that
calls your compiled code as if it were an
ordinary C function

 It also contains some functions that
compiled code can call as needed
 Mini “runtime library”

 Add to this if you like
 Sometimes simpler to generate a call to a newly

written library routine instead of generating in-line
code – implementer tradeoff

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-41

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-42

Bootstrap Program Sketch

#include <stdio.h>

extern void asm_main(); /* compiled code */

/* execute compiled program */

void main() { asm_main(); }

/* return next integer from standard input */

long get() { … }

/* write x to standard output */

void put(long x) { … }

/* return a pointer to a block of memory at least nBytes
large (or null if insufficient memory available) */

char* minijavaalloc(long nBytes) { return malloc(nBytes); }

Main Program Label

 Compiler needs special handling for the
static main method label
 Label must be the same as the one

declared extern in the C bootstrap program
and declared .globl in the .s asm file

 asm_main used above
 Could be changed, but probably no point

 Why not “main”? (Hint: what is/where is the
real main function?)

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-43

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-44

Interfacing to “Library” code

 Trivial to call “library” functions

 Evaluate parameters using the regular
calling conventions

 Generate a call instruction using the
function label

 (External names need a leading _ in
Windows, OS X)

 Linker will hook everything up

System.out.println(exp)

 MiniJava’s “print” statement
<compile exp; result in %rax>

movq %rax,%rdi ; load argument register

call put ; call external put routine

 If the stack is not kept 16-byte aligned,
calls to external C or library code are
the most likely place for a runtime error

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-45

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-46

And That’s It…

 We’ve now got enough on the table to
complete the compiler project

 Coming Attractions

 Lower-level IR and control-flow graphs

 Back end (instruction selection and
scheduling, register allocation)

 Middle (optimizations)

