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CSE 401 – Compilers 

Survey of Code Optimizations 

Hal Perkins 

Autumn 2011 



Agenda 

 Survey some code “optimizations” 
(improvements) 

 Get a feel for what’s possible 

 Some organizing concepts 

 Basic blocks 

 Control-flow and dataflow graph 
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Optimizations 

 Use added passes to identify inefficiencies in 
intermediate or target code  

 Replace with equivalent (“has the same externally 
visible behavior”) but better sequences  

 Target-independent optimizations best done on IL 
code  

 Target-dependent optimizations best done on 
target code  

 “Optimize” overly optimistic: “usually improve” is 
generally more accurate 
 And “clever” programmers can outwit you! 
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An example 

x = a[i] + b[2];  

c[i] = x - 5;  

t1 = *(fp + ioffset);  // i  

t2 = t1 * 4;  

t3 = fp + t2;  

t4 = *(t3 + aoffset);  // a[i]  

t5 = 2;  

t6 = t5 * 4;  

t7 = fp + t6;  

t8 = *(t7 + boffset);  // b[2]  

t9 = t4 + t8; *(fp + xoffset) = t9; // x = … 

t10 = *(fp + xoffset); // x  

t11 = 5;  

t12 = t10 - t11;  

t13 = *(fp + ioffset); // i  

t14 = t13 * 4;  

t15 = fp + t14;  

*(t15 + coffset) = t12; // c[i] := … 

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-4 



Kinds of optimizations 

 peephole: look at adjacent instructions  
 local: look at straight-line sequence of statements  
 intraprocedural: look at whole procedure 

 Commonly called “global” 

 interprocedural: look across procedures 
 “whole program” analysis 
 “link time optimization” is a version of this 

 Larger scope => usually better optimization but 
more cost and complexity 
 Analysis is often less precise because of more 

possibilities 
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Peephole Optimization 

 After target code generation, look at 
adjacent instructions (a “peephole” on 
the code stream)  

 try to replace adjacent instructions with 
something faster  

 

 

 

sw $8,  12($fp)  

lw $12, 12($fp) 

 

sw $8,  12($fp)  

mv $12, $8 
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More Examples: 68K 

 

 

 

 

 

 

 

 One way to do complex instruction selection 

sub sp, 4, sp  

mov r1, 0(sp)  
mov r1, -(sp)  

 

mov 12(fp), r1  

add r1, 1, r1  

mov r1, 12(fp) 

inc 12(fp) 
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Peephole Optimization of 
Jumps 

 Eliminate jumps to jumps 
 Eliminate jumps after conditional branches  
 “Adjacent” instructions = “adjacent in control 

flow”  
  Source code  

if (a < b) {  

   if (c < d) { // do nothing 

   } else { 

      stmt1;  

   }  

 } else {  

    stmt2; 

 }  
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Algebraic Simplification 

 “constant folding”, “strength reduction”  

 z = 3 + 4;  

 z = x + 0;  

 z = x * 1;  

 z = x * 2;  

 z = x * 8;  

 z = x / 8;  

 

 double x, y, z;  

 z = (x + y) - y;  

 Can be done by peephole optimizer, or by code generator 

 Why do these examples happen? 
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Local Optimizations 

 Analysis and optimizations within a basic block  

 Basic block: straight-line sequence of 
statements  
 no control flow into or out of middle of sequence  

 Better than peephole  

 Not too hard to implement  

 

 Machine-independent, if done on intermediate 
code 
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Local Constant Propagation 

 If variable assigned a constant, replace 
downstream uses of the variable with 
constant  

 Can enable more constant folding  

 Code; unoptimized intermediate code:  

final int count = 10;  

...  

x = count * 5;  

y = x ^ 3;  

 

t1 = 10;  

t2 = 5;  

t3 = t1 * t2;  

x = t3;  

t4 = x;  

t5 = 3;  

t6 = exp(t4, t5);  

y = t6;  
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Local Dead Assignment 
Elimination 

 If l.h.s. of assignment never referenced again before 
being overwritten, then can delete assignment  

 Why would this happen?   
Clean-up after previous optimizations, often 

 

 

final int count = 10;  

...  

x = count * 5;  

y = x ^ 3;  

x = 7; 

 

t1 = 10;  

t2 = 5;  

t3 = 50;  

x = 50;  

t4 = 50;  

t5 = 3;  

t6 = 125000;  

y = 125000;  

x = 7;  

Intermediate code after constant propagation 
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Local Common Subexpression 
Elimination 

 Avoid repeating the same calculation  

 Eliminate redundant loads 

 Keep track of available expressions 

 
 

... a[i] + b[i] ... 

 

t1 = *(fp + ioffset);  

t2 = t1 * 4;  

t3 = fp + t2;  

t4 = *(t3 + aoffset);  

t5 = *(fp + ioffset);  

t6 = t5 * 4;  

t7 = fp + t6;  

t8 = *(t7 + boffset);  

t9 = t4 + t8; 

 

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-13 



Intraprocedural optimizations 

 Enlarge scope of analysis to whole 
procedure  
 more opportunities for optimization  
 have to deal with branches, merges, and loops  

 Can do constant propagation, common 
subexpression elimination, etc. at “global” 
level  

 Can do new things, e.g. loop optimizations  
 Optimizing compilers usually work at this 

level  (-O2) 

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-14 



Code Motion 

 Goal: move loop-invariant calculations out of loops  

 Can do at source level or at intermediate code level 

for (i = 0; i < 10; i = i+1) {  

  a[i] = a[i] + b[j];  

  z = z + 10000;  

}  
 

t1 = b[j];  

t2 = 10000;  

for (i = 0; i < 10; i = i+1) {  

  a[i] = a[i] + t1;  

  z = z + t2;  

}  
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Code Motion at IL 
for (i = 0; i < 10; i = i+1) {  

  a[i] = b[j];  

}  

 *(fp + ioffset) = 0;  

label top;  

  t0 = *(fp + ioffset);  

  iffalse (t0 < 10) goto done;  

  t1 = *(fp + joffset);  

  t2 = t1 * 4;  

  t3 = fp + t2;  

  t4 = *(t3 + boffset);  

  t5 = *(fp + ioffset);  

  t6 = t5 * 4;  

  t7 = fp + t6; *(t7 + aoffset) = t4;  

  t9 = *(fp + ioffset);  

  t10 = t9 + 1;  

  *(fp + ioffset) = t10;  

  goto top;  

label done; 

Unoptimized 
intermediate 

code 
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Loop Induction Variable 
Elimination 

 For-loop index is induction variable  
 incremented each time around loop  
 offsets & pointers calculated from it  

 If used only to index arrays, can rewrite with pointers  
 compute initial offsets/pointers before loop  
 increment offsets/pointers each time around loop  
 no expensive scaling in loop 
 can then do loop-invariant code motion  
for (i = 0; i < 10; i = i+1) {  

  a[i] = a[i] + x;  

}  

 => transformed to 
for (p = &a[0]; p < &a[10]; p = p+4) {  

  *p = *p + x;  

}  
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Interprocedural Optimization 

 Expand scope of analysis to procedures 
calling each other  

 Can do local & intraprocedural 
optimizations at larger scope  

 Can do new optimizations, e.g. inlining  
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Inlining: replace call with body 

 Replace procedure call with body of called procedure  
 Source:  

final double pi = 3.1415927;  

double circle_area(double radius) {  

   return pi * (radius * radius);  

}  

...  

double r = 5.0;  

...  

double a = circle_area(r);  

 After inlining:  
...  

double r = 5.0;  

...  

double a = pi * r * r;  

 (Then what?) 
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Intraprocedural (Global) 
Optimizations 

 Need a convenient representation of procedure body 
 Control flow graph (CFG) captures flow of control  

 nodes are IL statements, or whole basic blocks  
 edges represent (all possible) control flow  
 node with multiple successors = branch/switch  
 node with multiple predecessors = merge  
 loop in graph = loop  

 Data flow graph (DFG) capture flow of data, e.g. def/use 
chains:  
 nodes are def(inition)s and uses  
 edge from def to use  
 a def can reach multiple uses  
 a use can have multiple reaching defs 
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Analysis and Transformation 

 Each optimization is made up of  

 some number of analyses  

 followed by a transformation  

 Analyze CFG and/or DFG by propagating info forward or 
backward along CFG and/or DFG edges  

 edges called program points  

 merges in graph require combining info  

 loops in graph require iterative approximation  

 Perform improving transformations based on info computed  

 have to wait until any iterative approximation has converged  

 Analysis must be conservative/safe/sound so that 
transformations preserve program behavior 

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-21 



Example: Constant Propagation, Folding 

 Can use either the CFG or the DFG  

 CFG analysis info: table mapping each variable in scope to one of:  

 a particular constant  

 NonConstant  

 Undefined  

 Transformation at each instruction:  

 if reference a variable that the table maps to a constant,  then 
replace with that constant (constant propagation)  

 if r.h.s. expression involves only constants, and has no side-
effects, then perform operation at compile-time and replace 
r.h.s. with constant result (constant folding)  

 For best analysis, do constant folding as part of analysis, to learn 
all constants in one pass 
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Merging data flow analysis 
info 

 Constraint: merge results must be sound  
 if something is believed true after the merge, then it 

must be true no matter which path we took into the  
merge  

 only things true along all predecessors are true after 
the merge  

 To merge two maps of constant information, build 
map by merging corresponding variable 
information  

 To merge information about two variable 
 if one is Undefined, keep the other  
 if both same constant, keep that constant  
 otherwise, degenerate to NonConstant 
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Example Merges 

  

int x 

x := 5 x := 5 

x ==? 

int x 

x := 5 x := 4 

x ==? 

int x 

x := 5 

x ==? 
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Example Merges 

  
int x 

x := 5 

x ==? 

int x 

x := 5 x := f(…) 

x ==? 
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How to analyze loops 

i = 0;  

x = 10;  

y = 20;  

while (...) {  

  // what’s true here?  

  ...  

  i = i + 1;  

  y = 30;  

}  

// what’s true here?  

... x ... i ... y ...  

 Safe but imprecise: 
forget everything 
when we enter or 
exit a loop  

 Precise but unsafe: 
keep everything 
when we enter or 
exit a loop  

 Can we do better?  
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Loop Terminology  

  

preheader 

entry edge 

head 

back  

edge 

tail 

loop 

exit edge 
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Optimistic Iterative Analysis 

 Assuming information at loop head is same as 
information at loop entry  

 Then analyze loop body, computing information at 
back edge  

 Merge information at loop back edge and loop 
entry  

 Test if merged information is same as original 
assumption  
 If so, then we’re done  
 If not, then replace previous assumption with merged 

information, 
 and go back to analysis of loop body 
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Example 

i = 0;  

x = 10;  

y = 20;  

while (...) {  

   // what’s true here?  

   ...  

   i = i + 1;  

   y = 30; }  

// what’s true here?  

... x ... i ... y ...  
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Why does this work? 

 Why are the results always conservative?  
 Because if the algorithm stops, then  

 the loop head info is at least as conservative as both 
the  loop entry info and the loop back edge info  

 the analysis within the loop body is conservative, given 
the  assumption that the loop head info is conservative  

 Why does the algorithm terminate?  
 It might not!  
 But it does if:  

 there are only a finite number of times we could merge  
values together without reaching the worst case info 
(e.g. NotConstant) 
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More interprocedural analyses 

 Needed to support interprocedural 
optimizations 

 Alias analysis 
 Different references referring to the same memory 

locations 
 may-alias vs. must-alias, context- and flow-

sensitivity 

 Escape analysis (pointers that are live on exit 
from procedures), shape analysis (static 
analysis of the properties of dynamic data 
structures), … 
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Supporting representations 
include 

 Call graph 

 Program dependence graph 

 … 
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Summary 

 Enlarging scope of analysis yields better results  
 today, most optimizing compilers work at the 

intraprocedural (a\k\a global) level 
 Changing though, e.g., gcc LTO (link-time optimization)  

 Optimizations organized as collections of 
passes, each rewriting IL in place into better 
version  

 Presence of optimizations makes other parts of 
compiler (e.g. intermediate and target code 
generation) easier to write 

 
11/22/2011 © 2002-11 Hal Perkins & UW CSE N-33 


