
11/22/2011 © 2002-11 Hal Perkins & UW CSE N-1

CSE 401 – Compilers

Survey of Code Optimizations

Hal Perkins

Autumn 2011

Agenda

 Survey some code “optimizations”
(improvements)

 Get a feel for what’s possible

 Some organizing concepts

 Basic blocks

 Control-flow and dataflow graph

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-2

Optimizations

 Use added passes to identify inefficiencies in
intermediate or target code

 Replace with equivalent (“has the same externally
visible behavior”) but better sequences

 Target-independent optimizations best done on IL
code

 Target-dependent optimizations best done on
target code

 “Optimize” overly optimistic: “usually improve” is
generally more accurate
 And “clever” programmers can outwit you!

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-3

An example

x = a[i] + b[2];

c[i] = x - 5;

t1 = *(fp + ioffset); // i

t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset); // a[i]

t5 = 2;

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset); // b[2]

t9 = t4 + t8; *(fp + xoffset) = t9; // x = …

t10 = *(fp + xoffset); // x

t11 = 5;

t12 = t10 - t11;

t13 = *(fp + ioffset); // i

t14 = t13 * 4;

t15 = fp + t14;

*(t15 + coffset) = t12; // c[i] := …

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-4

Kinds of optimizations

 peephole: look at adjacent instructions
 local: look at straight-line sequence of statements
 intraprocedural: look at whole procedure

 Commonly called “global”

 interprocedural: look across procedures
 “whole program” analysis
 “link time optimization” is a version of this

 Larger scope => usually better optimization but
more cost and complexity
 Analysis is often less precise because of more

possibilities

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-5

Peephole Optimization

 After target code generation, look at
adjacent instructions (a “peephole” on
the code stream)

 try to replace adjacent instructions with
something faster

sw $8, 12($fp)

lw $12, 12($fp)

sw $8, 12($fp)

mv $12, $8

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-6

More Examples: 68K

 One way to do complex instruction selection

sub sp, 4, sp

mov r1, 0(sp)
mov r1, -(sp)

mov 12(fp), r1

add r1, 1, r1

mov r1, 12(fp)

inc 12(fp)

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-7

Peephole Optimization of
Jumps

 Eliminate jumps to jumps
 Eliminate jumps after conditional branches
 “Adjacent” instructions = “adjacent in control

flow”
 Source code

if (a < b) {

 if (c < d) { // do nothing

 } else {

 stmt1;

 }

 } else {

 stmt2;

 }

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-8

Algebraic Simplification

 “constant folding”, “strength reduction”

 z = 3 + 4;

 z = x + 0;

 z = x * 1;

 z = x * 2;

 z = x * 8;

 z = x / 8;

 double x, y, z;

 z = (x + y) - y;

 Can be done by peephole optimizer, or by code generator

 Why do these examples happen?
11/22/2011 © 2002-11 Hal Perkins & UW CSE N-9

Local Optimizations

 Analysis and optimizations within a basic block

 Basic block: straight-line sequence of
statements
 no control flow into or out of middle of sequence

 Better than peephole

 Not too hard to implement

 Machine-independent, if done on intermediate
code

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-10

Local Constant Propagation

 If variable assigned a constant, replace
downstream uses of the variable with
constant

 Can enable more constant folding

 Code; unoptimized intermediate code:

final int count = 10;

...

x = count * 5;

y = x ^ 3;

t1 = 10;

t2 = 5;

t3 = t1 * t2;

x = t3;

t4 = x;

t5 = 3;

t6 = exp(t4, t5);

y = t6;

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-11

Local Dead Assignment
Elimination

 If l.h.s. of assignment never referenced again before
being overwritten, then can delete assignment

 Why would this happen?
Clean-up after previous optimizations, often

final int count = 10;

...

x = count * 5;

y = x ^ 3;

x = 7;

t1 = 10;

t2 = 5;

t3 = 50;

x = 50;

t4 = 50;

t5 = 3;

t6 = 125000;

y = 125000;

x = 7;

Intermediate code after constant propagation
11/22/2011 N-12

Local Common Subexpression
Elimination

 Avoid repeating the same calculation

 Eliminate redundant loads

 Keep track of available expressions

... a[i] + b[i] ...

t1 = *(fp + ioffset);

t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);

t5 = *(fp + ioffset);

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-13

Intraprocedural optimizations

 Enlarge scope of analysis to whole
procedure
 more opportunities for optimization
 have to deal with branches, merges, and loops

 Can do constant propagation, common
subexpression elimination, etc. at “global”
level

 Can do new things, e.g. loop optimizations
 Optimizing compilers usually work at this

level (-O2)

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-14

Code Motion

 Goal: move loop-invariant calculations out of loops

 Can do at source level or at intermediate code level

for (i = 0; i < 10; i = i+1) {

 a[i] = a[i] + b[j];

 z = z + 10000;

}

t1 = b[j];

t2 = 10000;

for (i = 0; i < 10; i = i+1) {

 a[i] = a[i] + t1;

 z = z + t2;

}

N-15

Code Motion at IL
for (i = 0; i < 10; i = i+1) {

 a[i] = b[j];

}

 *(fp + ioffset) = 0;

label top;

 t0 = *(fp + ioffset);

 iffalse (t0 < 10) goto done;

 t1 = *(fp + joffset);

 t2 = t1 * 4;

 t3 = fp + t2;

 t4 = *(t3 + boffset);

 t5 = *(fp + ioffset);

 t6 = t5 * 4;

 t7 = fp + t6; *(t7 + aoffset) = t4;

 t9 = *(fp + ioffset);

 t10 = t9 + 1;

 *(fp + ioffset) = t10;

 goto top;

label done;

Unoptimized
intermediate

code

N-16

Loop Induction Variable
Elimination

 For-loop index is induction variable
 incremented each time around loop
 offsets & pointers calculated from it

 If used only to index arrays, can rewrite with pointers
 compute initial offsets/pointers before loop
 increment offsets/pointers each time around loop
 no expensive scaling in loop
 can then do loop-invariant code motion
for (i = 0; i < 10; i = i+1) {

 a[i] = a[i] + x;

}

 => transformed to
for (p = &a[0]; p < &a[10]; p = p+4) {

 *p = *p + x;

}

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-17

Interprocedural Optimization

 Expand scope of analysis to procedures
calling each other

 Can do local & intraprocedural
optimizations at larger scope

 Can do new optimizations, e.g. inlining

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-18

Inlining: replace call with body

 Replace procedure call with body of called procedure
 Source:

final double pi = 3.1415927;

double circle_area(double radius) {

 return pi * (radius * radius);

}

...

double r = 5.0;

...

double a = circle_area(r);

 After inlining:
...

double r = 5.0;

...

double a = pi * r * r;

 (Then what?)

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-19

Intraprocedural (Global)
Optimizations

 Need a convenient representation of procedure body
 Control flow graph (CFG) captures flow of control

 nodes are IL statements, or whole basic blocks
 edges represent (all possible) control flow
 node with multiple successors = branch/switch
 node with multiple predecessors = merge
 loop in graph = loop

 Data flow graph (DFG) capture flow of data, e.g. def/use
chains:
 nodes are def(inition)s and uses
 edge from def to use
 a def can reach multiple uses
 a use can have multiple reaching defs

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-20

Analysis and Transformation

 Each optimization is made up of

 some number of analyses

 followed by a transformation

 Analyze CFG and/or DFG by propagating info forward or
backward along CFG and/or DFG edges

 edges called program points

 merges in graph require combining info

 loops in graph require iterative approximation

 Perform improving transformations based on info computed

 have to wait until any iterative approximation has converged

 Analysis must be conservative/safe/sound so that
transformations preserve program behavior

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-21

Example: Constant Propagation, Folding

 Can use either the CFG or the DFG

 CFG analysis info: table mapping each variable in scope to one of:

 a particular constant

 NonConstant

 Undefined

 Transformation at each instruction:

 if reference a variable that the table maps to a constant, then
replace with that constant (constant propagation)

 if r.h.s. expression involves only constants, and has no side-
effects, then perform operation at compile-time and replace
r.h.s. with constant result (constant folding)

 For best analysis, do constant folding as part of analysis, to learn
all constants in one pass

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-22

Merging data flow analysis
info

 Constraint: merge results must be sound
 if something is believed true after the merge, then it

must be true no matter which path we took into the
merge

 only things true along all predecessors are true after
the merge

 To merge two maps of constant information, build
map by merging corresponding variable
information

 To merge information about two variable
 if one is Undefined, keep the other
 if both same constant, keep that constant
 otherwise, degenerate to NonConstant

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-23

Example Merges

int x

x := 5 x := 5

x ==?

int x

x := 5 x := 4

x ==?

int x

x := 5

x ==?

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-24

Example Merges

int x

x := 5

x ==?

int x

x := 5 x := f(…)

x ==?

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-25

How to analyze loops

i = 0;

x = 10;

y = 20;

while (...) {

 // what’s true here?

 ...

 i = i + 1;

 y = 30;

}

// what’s true here?

... x ... i ... y ...

 Safe but imprecise:
forget everything
when we enter or
exit a loop

 Precise but unsafe:
keep everything
when we enter or
exit a loop

 Can we do better?

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-26

Loop Terminology

preheader

entry edge

head

back

edge

tail

loop

exit edge

11/22/2011 N-27

Optimistic Iterative Analysis

 Assuming information at loop head is same as
information at loop entry

 Then analyze loop body, computing information at
back edge

 Merge information at loop back edge and loop
entry

 Test if merged information is same as original
assumption
 If so, then we’re done
 If not, then replace previous assumption with merged

information,
 and go back to analysis of loop body

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-28

Example

i = 0;

x = 10;

y = 20;

while (...) {

 // what’s true here?

 ...

 i = i + 1;

 y = 30; }

// what’s true here?

... x ... i ... y ...

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-29

Why does this work?

 Why are the results always conservative?
 Because if the algorithm stops, then

 the loop head info is at least as conservative as both
the loop entry info and the loop back edge info

 the analysis within the loop body is conservative, given
the assumption that the loop head info is conservative

 Why does the algorithm terminate?
 It might not!
 But it does if:

 there are only a finite number of times we could merge
values together without reaching the worst case info
(e.g. NotConstant)

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-30

More interprocedural analyses

 Needed to support interprocedural
optimizations

 Alias analysis
 Different references referring to the same memory

locations
 may-alias vs. must-alias, context- and flow-

sensitivity

 Escape analysis (pointers that are live on exit
from procedures), shape analysis (static
analysis of the properties of dynamic data
structures), …

11/22/2011 31 © 2002-11 Hal Perkins & UW CSE

Supporting representations
include

 Call graph

 Program dependence graph

 …

11/22/2011 32 © 2002-11 Hal Perkins & UW CSE

Summary

 Enlarging scope of analysis yields better results
 today, most optimizing compilers work at the

intraprocedural (a\k\a global) level
 Changing though, e.g., gcc LTO (link-time optimization)

 Optimizations organized as collections of
passes, each rewriting IL in place into better
version

 Presence of optimizations makes other parts of
compiler (e.g. intermediate and target code
generation) easier to write

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-33

