CSE 401 — Compilers

Survey of Code Optimizations
Hal Perkins
Winter 2015

Administrivia

* Codegen assignment:

— Added: please put your boot.c file in src/boot.c
e (so we can run your compiled code with your runtime)
* Also: we updated boot.c to use the proper formatting code
for 64-bit int put. Not crucial, but change if you want

— No change: be sure that MinilJava.main still works as
specified — not moved to some package somewhere

— Check out csed01 project web page for x86-64 info
and links

Agenda

e Survey some code “optimizations”
(improvements)

— Get a feel for what’s possible

* Some organizing concepts
— Basic blocks
— Control-flow and dataflow graph
— Analysis vs. transformation

UW CSE 401 Winter 2015

N-3

Optimizations

 Use added passes to identify inefficiencies in intermediate
or target code

* Replace with equivalent but better sequences
— Equivalent = “has same externally visible behavior”

— Better can mean many things: faster, smaller, reduce energy
consumption, etc.

 Target-independent optimizations best done on IL code
— Remove redundant computations, eliminate dead code, etc.
 Target-dependent optimizations best done on target code
— Tailor code sequences to particular machines
 “Optimize” overly optimistic: “usually improve” is generally
more accurate
— And “clever” programmers can outwit you!

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = t1 * 4;

t3 = fp + t2;

t4d = *(t3 + aoffset); // a[il]

ts = 2;

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset); // b[2]

t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..
tl0 = *(fp + xoffset); // x

tll = 5;
tl2 = t10 - tl11;
tl3 = *(fp + ioffset); // i

tld = t13 * 4;
tl5 = fp + tl4;

*(tl5 + coffset) = tl1l2; // c[i] := ..

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl < 2; // was tl1l * 4
t3 = fp + t2;
t4d = *(t3 + aoffset); // a[il]
ts = 2;
t6 = th <K 2; // was t5 * 4
t7 = fp + t6;
: - t8 = *(t7 + boffset); // b[2]
Strength reduction: shift £t9 = t4 + t8:
often cheaper than multiply *(fp + xoffset) = t9; // x = ..
tl0 = *(fp + xoffset); // x
tll = 5;
tl2 = t10 - t11;
tl3 = *(fp + ioffset); // i

tld = t13 << 2; // was tl3 * 4
tl5 = fp + tl4;

*(tl5 + coffset) = tl1l2; // c[i] := ..

UW CSE 401 Winter 2015

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t5 = 2;
t6 = 2 << 2; // was tb << 2
t7 = fp + t6;
: t8 = *(t7 + boffset); // b[2]
Constant propagation: £t9 = t4 + t8:
replace variables with *(fp + xoffset) = t9; // x = ..
known constant values £10 = *(£p + xoffset); // x
tll = 5;
tl2 = t10 - 5; // was tl0 - tll
tl3 = *(fp + ioffset); // i

tl4 = t13 << 2;
tl5 = fp + tl4;

*(tl5 + coffset) = tl1l2; // c[i] := ..

UW CSE 401 Winter 2015

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
t2 = tl1 < 2;

t3 = fp + t2;

t4d = *(t3 + aoffset); // al[il]
£t5 = 2

t6 = 2 < 2;

t7 = fp + t6;

c[i] = x - 5;

t8 = *(t7 + boffset); // b[2]

Dead store (or dead £t9 = t4 + t8;

assignment) elimination: *(fp + xoffset) = t9; // x = ..
remove a55|gnment§ to t10 = *(fp + xoffset); // x
provably unused variables +11 - E.

tl2 = t10 - 5;
tl3 = *(fp + ioffset); // i
tl4 = t13 << 2;
tl5 = fp + tl4;

*(tl5 + coffset) = tl1l2; // c[i] := ..

UW CSE 401 Winter 2015

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t6 = 8; // was 2 << 2
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
Constant folding: statically £t9 = t4 + t8;
CO_mpUte operations * (fp + xoffset) = t9; // x = ..
with known constant values £10 = *(fp + xoffset); // x

tl2 = t10 - 5;
tl3 = *(fp + ioffset); // i
tl4d = t13 << 2;
tl5 = fp + t14;

* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401 Winter 2015

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
£+6—=8;

t7 = fp + 8; // was fp + t6
t8 = *(t7 + boffset); // b[2]

Constant propagation then t9 = t4 + t8:;
dead store elimination * (fp + xoffset) = t9; // x

tl0 = *(fp + xoffset); // x

tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i

tld = tl1l3 << 2;

tl5 = fp + t14;

* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401 Winter 2015 N-10

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t7 = boffset + 8; // was fp + 8
t8 = *(t7 + fp); // b[2] (was t7 + boffset)

t9 = t4 + t8;

Arithmetic identities: + is * (fp + xoffset) = t9; // x = ..
commutative & associative. t10 = *(fp + xoffset); // x
boffset is typically a known, £12 = £10 - 5:

compile-time constant (say ’ _
i 13 = *(fp + ioff ;
-32), so this enables... t13 (fp + ioffset); // i
tld = t13 << 2;

tl5 = fp + tl4;
* (tl5 + coffset) = tl1l2; // c[i] := ..

UW CSE 401 Winter 2015 N-11

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t7 = -24; // was boffset (-32) + 8
t8 = *(t7 + £fp); // bl[2]
t9 = t4 + t8;
... more constant folding, *(fp + xoffset) = t9; // x = ..
which in turn enables ... t10 = *(fp + xoffset); // x

tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i

tl4 = t13 << 2;

tl5 = fp + t14;

* (tl5 + coffset) = tl1l2; // c[i] := ..

UW CSE 401 Winter 2015 N-12

An example

c[i]=x—5; t2=t1<<2,’
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
£l =-24:

t8 = *(fp - 24); // b[2] (was t7+£p)
t9 = t4 + t8;

More constant propagation * (fp + xoffset) = t9; // x = ..
and dead store elimination t10 = *(fp + xoffset); // x

tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i

tl4 = t13 << 2;

tl5 = fp + tl4;

* (tl5 + coffset) = tl1l2; // c[i] := ..

UW CSE 401 Winter 2015 N-13

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t8 = *(fp - 24); // b[2]

t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..

Common subexpression tl0 = *(fp + xoffset); // x

elimination — no need to £12 = t10 - 5;

compute *(fp+ioffset) again [T~ i13 = 1. // i (was *(fp + ioffset))
if we know it won’t change t14 = £13 << 2:

tl5 = fp + t14;
* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401 Winter 2015 N-14

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t8 = *(fp - 24); // b[2]

t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..

Copy propagation: replace t10 = t9; // x (was *(fp + xoffset))
assignment targets with t12 = t10 - 5;

their values (e.g., replace £13 = t1: /) i

t13 with t1) tl4 = t1 << 2; // was tl3 << 2

tl5 = fp + t14;
* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401 Winter 2015 N-15

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t8 = *(fp - 24); // bl[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x =
Common subexpression £t10 = t9; /] x
elimination t12 = t10 - 5;
tl3 = tl; // i
tl4d = t2; // was tl << 2

tl5 = fp + t14;
* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401 Winter 2015 N-16

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t8 = *(fp - 24); // b[2]

t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..

More copy propagation t10 = t9; // x
\\\\\\\‘ﬁst12 = t9 - 5; // was t1l0 - 5

tl3 = t1; // i

tld = t2;

tl5 = fp + t14;

* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401 Winter 2015 N-17

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t8 = *(fp - 24); // bl[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x =
More copy propagation t1l0 = t9; // x
tl2 = t9 - 5;
t13 = tl1; // i
t1l4 = t2;

tl5 = fp + t2; // was fp + tl4
* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401 Winter 2015 N-18

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset); // alil]
t8 = *(fp - 24); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..
Dead assignment _S£10 = £9. 0 // &
elimination t12 = t9 - 5;
£t13 = +1; 15

tl5 = fp + t2;
* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401 Winter 2015 N-19

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[il]
t8 = *(fp - 24); // b[2]

t9 = t4 + t8;

*(fp + xoffset) = t9; // x = ..

tl2 = t9 - 5;

tl5 = fp + t2;

* (tl5 + coffset) = tl1l2; // c[i] := ..

« Final: 3 loads (i, a[i], b[2]), 2 stores (X, c[i]), 5 register-only moves, 9 +/-, 1 shift
« Original: 5 loads, 2 stores, 10 register-only moves, 12 +/-, 3 *

« Optimizer note: we usually leave assignment of actual registers to later stage of
the compiler and assume as many “pseudo registers” as we need here

Kinds of optimizations

* peephole: look at adjacent instructions

* |ocal: look at individual basic blocks
— straight-line sequence of statements

* intraprocedural: look at whole procedure
— Commonly called “global”

* interprocedural: look across procedures
— “whole program” analysis
— gcc’s “link time optimization” is a version of this
* Larger scope => usually better optimization but more
cost and complexity
— Analysis is often less precise because of more possibilities

Peephole Optimization

e After target code generation, look at adjacent
instructions (a “peephole” on the code
stream)

— try to replace adjacent instructions with
something faster

movqg %r9,16 (%rsp) movqg %r9,16 (%rsp)
movqg 16 (%rsp),%rl2 movqg %r9,%rl2

— Jump chaining can also be considered a form of
peephole optimization (removing jump to jump)

More Examples

subg $8,%rax movqg %$r2,-8 (%$rax)
movqg %r2,0 (%$rax)
$rax overwritten

movq 16 (%rsp),%rax |incq 16 (%rsp)
addq $1,%rax

movq %rax,1l6 (%rsp)
%rax overwritten

 One way to do complex instruction selection

UW CSE 401 Winter 2015 N-23

Algebraic Simplification

—_zZ =

— Z

I
N N N N N

n u

* “constant folding”,

3 + 4;

°
14

X X X X N
~N O F % ok +
©® O N KB O

o
14

(x + y)

strength reduction’

v

=
=t
e
e
e
Y-

Z =

N N N N N
I

=)

)

7

X

X

x<<1l orz=x+ x

x << 3

x >> 3 (only if x>=0 known)
z = x (maybe; not doubles,

might change int overflow)

* Can be done at many levels from peephole on up

* Why do these examples happen?

— Often created during conversion to lower-level IR, by other optimizations, code gen, etc.

UW CSE 401 Winter 2015 N-24

Local Optimizations

* Analysis and optimizations within a basic block

* Basic block: straight-line sequence of
statements

— no control flow into or out of middle of sequence
* Better than peephole
* Not too hard to implement with reasonable IR

 Machine-independent, if done on IR

Local Constant Propagation

If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

Can enable more constant folding

— Code; unoptimized intermediate code:

X =

"
I

count =

10;
// count not changed
count * 5;
x ~ 3;
7;

count = 10;

tl = count;

t2 = 5;

t3 = t1 * t2;

x = t3;

t4 = x;

t5 = 3;

t6 = exp(t4,ts);
y = t6;

x = 7

UW CSE 401 Winter 2015

N-26

Local Constant Propagation

If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

Can enable more constant folding

— Code; constant propagation:

X =

"
I

count =

10;
// count not changed
count * 5;
x ~ 3;
7;

count = 10;

tl = 10;

t2 = 5;

t3 =10 * t2;

x = t3;

t4 = x;

t5 = 3;

t6 = exp(t4,3);
y = t6;

x = 7

// cp count

// cp tl

// cp t5

UW CSE 401 Winter 2015

N-27

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable

reassigned)

* Can enable more constant folding
— Code; constant folding:

count = 10; count = 10;
// count not changed tl = 10;
X = count * §5; t2 = 5;
y = x *~ 3; t3 = 50; // 10*t2
x = 7; x = t3;
t4 = x;
ts = 3;
t6 = exp(t4,3);
y = t6;
x = 7;

UW CSE 401 Winter 2015

N-28

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable

reassigned)

* Can enable more constant folding
— Code; repropagated intermediate code

count = 10; count = 10;
// count not changed tl = 10;

X = count * 5; t2 = 5;

y = x * 3; t3 = 50;

x = 7; x = 50; // cp t3
t4d = 50; // cp x
t5 = 3;
t6 = exp(50,3); // cp t4
y = t6;
x = 7;

UW CSE 401 Winter 2015

N-29

Local Constant Propagation

If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

Can enable more constant folding

— Code; refold intermediate code

X =

"
I

count =

10;
// count not changed
count * 5;
x ~ 3;
7;

count = 10;

tl = 10;

t2 = 5;

t3 = 50;

x = 50;

t4 = 50;

t5 = 3;

t6 = 125000; // cf 50%3
y = t6;

x = 7;

UW CSE 401 Winter 2015

N-30

Local Constant Propagation

If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

Can enable more constant folding

— Code; repropagated intermediate code

X =

"
I

count =

10;
// count not changed
count * 5;
x ~ 3;
7;

count = 10;

tl = 10;

t2 = 5;

t3 = 50;

x = 50;

t4 = 50;

t5 = 3;

t6 = 125000;
y = 125000;

x = 7;

// cp t6

UW CSE 401 Winter 2015

N-31

Local Dead Assignment Elimination

* If l.h.s. of assignment never referenced again before being
overwritten, then can delete assignment

— Why would this happen?
Clean-up after previous optimizations, often

count = 10; count = 10;

.. // count not changed tl = 10;

X = count * §5; t2 = 5;

y = x * 3; t3 = 50;

x = 7; x = 50;
t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000;
x = 7;

UW CSE 401 Winter 2015 N-32

Local Dead Assignment Elimination

* If l.h.s. of assignment never referenced again before being

overwritten, then can delete assignment
— Why would this happen?

Clean-up after previous optimizations, often

<
o u

count = 10;

// count not changed
count * 5;
x ~ 3;

7;

count = 10;
£l =10

t2 = 5;
£3—=50-
x—=-50+
£4—=-50+
£5=3+
£+6—=—125000+
y = 125000;
x =17;

UW CSE 401 Winter 2015

N-33

Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
af[i] + b[i] ... t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);

t5 = *(fp + ioffset);

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;

UW CSE 401 Winter 2015 N-34

Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
. a[i] + b[i] ... t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);

t5 = t1; // CSE

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;

UW CSE 401 Winter 2015 N-35

Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
. a[i] + b[i] ... t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);

t5 = t1;

t6 = tl1 * 4; // CP

t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;

UW CSE 401 Winter 2015 N-36

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

. a[i] + b[i]

tl
t2
t3
t4
t5
t6
t7
t8
t9

*(fp
tl *
fp +
*(t3
tl;

t2;

fp +
*(t7
t4 +

+ jioffset);
4;

t2;

+ aoffset) ;

// CSE
t2; // CP
+ boffset) ;
t8;

UW CSE 401 Winter 2015

N-37

Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
. a[i] + b[i] ... t2 = tl1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset);
t5 = t1;
t6 = t2;
t7 = t3; // CSE
t8 = *(t3 + boffset); /i
t9 = t4 + t8;

UW CSE 401 Winter 2015 N-38

Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
. a[i] + b[i] ... t2 = 1 * 4;
t3 = fp + t2;

= *(t3 + aoffset);
t5=+1; // DAE
£t6—=+t2; // DAE
£t7=+3; // DAE

*(t3 + boffset) ;

t4 + t8;

UW CSE 401 Winter 2015 N-39

Intraprocedural optimizations

* Enlarge scope of analysis to whole procedure
— more opportunities for optimization
— have to deal with branches, merges, and loops

e Can do constant propagation, common

subexpression elimination, etc. at “global”
level

* Can do new things, e.g. loop optimizations

* Optimizing compilers usually work at this level
(-02)

Code Motion

* Goal: move loop-invariant calculations out of loops
 Can do at source level or at intermediate code level

for (i = 0; 1 < 10; i = i+l) {
a[i] = a[1] + b[]]:
z =2z + 10000;

}

tl = b[j];

t2 = 10000;

for (i = 0; 1 < 10; i = i+l) {
al[i] = a[i] + t1;

N-41

Code Motion at IL

}

for (i = 0; 1 < 10; i = i+l1l) {

a[i] = b[3jl];

*(fp + ioffset) = 0;
label top;

t0 = *(fp + ioffset);
iffalse (t0 < 10) goto done;

tl = *(fp + joffset);
t2 = tl1 * 4;
t3 = fp + t2;
t4 = *(t3 + boffset);
t5 = *(fp + ioffset);
t6 = t5 * 4;
t7 = fp + t6;

*(t7 + aoffset) = t4;
t9 = *(fp + ioffset);
tl0 = t9 + 1;

*(fp + ioffset) = t10;
goto top;

label done;

UW CSE 401 Winter 2015

N-42

Code Motion at IL

for (i = 0; 1 < 10; 1 = i+1) {

al[i] = b[jl’
}
tll = fp + ioffset; tl1l3 = fp + aoffset;
tl2 = fp + joffset; tl4 = fp + boffset
*(fp + ioffset) = O0;
label top;

t0 = *tl1;

iffalse (t0 < 10) goto done;

tl = *tl2;

t2 = tl1 * 4;

£33 =14+

t4 = *(t1ld + t2);

t5 = *tl1;

t6 = t5 * 4;

£l =13

*(tl3 + t6) = t4;

t9 = *tl1;

tl0 = t9 + 1;

*tll = t10;

goto top; N43
label done;

Loop Induction Variable Elimination

* A special and common case of loop-based strength reduction
* For-loop index is induction variable
— incremented each time around loop
— offsets & pointers calculated from it
e |f used only to index arrays, can rewrite with pointers
— compute initial offsets/pointers before loop
— increment offsets/pointers each time around loop
— no expensive scaling in loop
— can then do loop-invariant code motion
for (1 = 0; i < 10; i = i+1) {
af[i] = a[i] + x;
}
=> transformed to
for (p = &a[0]; p < &a[l0]; p = p+4) {
*p = *p + x;

UW CSE 401 Winter 2015 N-44

Interprocedural Optimization

* Expand scope of analysis to procedures calling
each other

 Can do local & intraprocedural optimizations
at larger scope

* Can do new optimizations, e.g. inlining

Inlining: replace call with body

* Replace procedure call with body of called procedure

* Source:
final double pi = 3.1415927;
double circle area(double radius) ({
return pi * (radius * radius);

}
double r = 5.0;

double a = circle area(r);
e Afterinlining:

double r = 5.0;

double a = pi * r * r;

* (Then what? Constant propagation/folding)

UW CSE 401 Winter 2015

N-46

Data Structures for Optimizations

* Need to represent control and data flow

e Control flow graph (CFG) captures flow of control
— nodes are IL statements, or whole basic blocks
— edges represent (all possible) control flow
— node with multiple successors = branch/switch
— node with multiple predecessors = merge
— loop in graph = loop
* Data flow graph (DFG) captures flow of data, e.g. def/use
chains:
— nodes are def(inition)s and uses
— edge from def to use
— a def can reach multiple uses

— a use can have multiple reaching defs (different control flow
paths, possible aliasing, etc.)

Analysis and Transformation

Each optimization is made up of
— some number of analyses
— followed by a transformation
* Analyze CFG and/or DFG by propagating info forward
or backward along CFG and/or DFG edges
— merges in graph require combining info
— loops in graph require iterative approximation
* Perform (improving) transformations based on info
computed

* Analysis must be conservative/safe/sound so that
transformations preserve program behavior

Example: Constant Propagation, Folding

e (Can use either the CFG or the DFG

CFG analysis info: table mapping each variable in scope to one of:
— a particular constant

— NonConstant
— Undefined

Transformation at each instruction:

— If an assignment of a constant to a variable, set variable as a constant
with known value

— If reference a variable that the table maps to a constant, then replace
with that constant (constant propagation)

— if r.h.s. expression involves only constants, and has no side-effects,
then perform operation at compile-time and replace r.h.s. with
constant result (constant folding)

For best analysis, do constant folding as part of analysis, to learn all
constants in one pass

Merging data flow analysis info

e Constraint: merge results must be sound

— if something is believed true after the merge, then it must
be true no matter which path we took into the merge

— only things true along all predecessors are true after the
merge
 To merge two maps of constant information, build
map by merging corresponding variable information
 To merge information about two variables:
— if one is Undefined, keep the other
— if both are the same constant, keep that constant
— otherwise, degenerate to NonConstant (NC)

Example Merges

SN
NN Y]
e

UW CSE 401 Winter 2015 N-51

Example Merges

int x int x

S e
O

UW CSE 401 Winter 2015 N-52

How to analyze loops

1=20; e Safe but imprecise:
=T 10’: forget everything when
zh;lzo'(.) we enter or exit a loop
// what’'s true here? * Precise but unsafe:
keep everything when
1= ;0" 1 we enter or exit a loop
y = 30;

} e Can we do better?

// what’s true here?

. X ... 1 ...V¢ ...

Loop Terminology
N/

preheader

entry edge

head‘

back
edge

exit edge

UW CSE 401 Winter 2015 N-54

Optimistic lterative Analysis

* |nitially assume information at loop head is same as
information at loop entry

 Then analyze loop body, computing information at
back edge

 Merge information at loop back edge and loop entry

* Testif merged information is same as original
assumption
— If so, then we’re done

— If not, then replace previous assumption with merged
information,

— and go back to analysis of loop body

Example

i=20;
x = 10;
y = 20;
while (...) { i=0,x=10,y =20

// what’s true here-?

i=1i4+1;
y = 30; }

// what’s true here? i=1,x=10,y =30

X ... 1 ...Y

Example

i=20;
x = 10;
y = 20;
while (...) { i =NC, x =10, y = NC

// what’s true here-?

i=1i41;
y = 30; } !

// what’s true here? i =NC, x =10,y =NC

X ... 1 ...Y

Why does this work?

* Why are the results always conservative?

* Because if the algorithm stops, then

— the loop head info is at least as conservative as both
the loop entry info and the loop back edge info

— the analysis within the loop body is conservative,
given the assumption that the loop head info is
conservative

e Will it terminate?

— Yes, if there are only a finite number of times we can
merge information before reaching worst-case info
(e.g., NonConstant / NC)

More analyses

e Alias analysis
— Detect when different references may or must refer to the same
memory locations
* Escape analysis
— Pointers that are live on exit from procedures
— Pointed-to data may “escape” to other procedures or threads

* Dependence analysis
— Determining which references depend on which other
references
— One application: analyze array subscripts that depend on loop
induction variables to determine which loop iterations depend

on each other
» Key analysis for loop parallelization/vectorization

59

Summary

* Optimizations organized as collections of passes, each
rewriting IL in place into (hopefully) better version

* Each pass does analysis to determine what is possible,
followed by transformation(s) that (hopefully) improve

the program
— Sometimes “analysis-only” passes are helpful
— Often redo analysis/transformations again to take
advantage of possibilities revealed by previous changes
* Presence of optimizations makes other parts of

compiler (e.g. intermediate and target code
generation) easier to write

