
CSE	401	–	Compilers	

Overview	and	Administrivia	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 A-1

Agenda	

•  IntroducCons	
•  Administrivia	
•  What’s	a	compiler?	
•  Why	you	want	to	take	this	course	

UW CSE 401 Winter 2017 A-2

Who:	Course	staff	
•  Instructor:		Hal	Perkins:	UW	faculty	for	a	while;	
CSE	401	veteran	(+	other	compiler	courses)	

•  TAs:	Erin	Peach,	Laura	Vonessen	

•  Get	to	know	us	–	we’re	here	to	help	you	succeed!	

•  Office	hours	posted	now,	but	quesCons:	
–  Posted	Cmes	are	4:30-5:30	M-F.		Could	switch	to	4-5	
on	Tue.-Thur.		What	would	y’all	like?	

–  In	the	lab	or	separate	TA	room?	
UW CSE 401 Winter 2017 A-3

Credits	
•  Some	direct	ancestors	of	this	course:	
– UW	CSE	401	(Chambers,	Snyder,	Notkin,	Perkins,	
Ringenburg,	Henry,	…)	

– UW	CSE	PMP	582/501	(Perkins)	
–  Cornell	CS	412-3	(Teitelbaum,	Perkins)	
–  Rice	CS	412	(Cooper,	Kennedy,	Torczon)	
– Many	books	(Appel;	Cooper/Torczon;	Aho,	[[Lam,]	
Sethi,]	Ullman	[Dragon	Book],	Fischer,	[Cytron	,]	
LeBlanc;	Muchnick,	…)	

•  [Won’t	ajempt	to	ajribute	everything	–	and	
some	of	the	details	are	lost	in	the	haze	of	Cme.]	

UW CSE 401 Winter 2017 A-4

So	whadda	ya	know?	

•  Official	prerequisites:	
– CSE	332	(data	abstracCons)	

•  and	therefore	CSE	311	(FoundaCons)	
– CSE	351	(hardware/sokware	interface,	x86_64)	

•  Also	useful,	but	not	required:	
– CSE	331	(sokware	design	&	implementaCon)	
– CSE	341	(programming	languages)	
– Who’s	taken	these?	

UW CSE 401 Winter 2017 A-5

Lectures	&	SecCons	

•  Both	required	

•  All	material	posted,	but	they	are	visual	aids	
–  Arrive	punctually	and	pay	ajenCon	(&	take	notes!)	
–  If	doing	so	doesn’t	save	you	Cme,	one	of	us	is	messing	up!	

•  SecCons:	addiConal	examples	and	exercises	plus	
project	details	and	tools	

•  AddiConal	project	and	other	material	posted	

UW CSE 401 Winter 2017 A-6

Staying	in	touch	

•  Course	web	site		
•  Discussion	board	
– For	anything	related	to	the	course	
–  Join	in!		Help	each	other	out.		Staff	will	contribute.	

•  Mailing	list	
– You	are	automaCcally	subscribed	if	you	are	
registered	

– Will	keep	this	fairly	low-volume;	limited	to	things	
that	everyone	needs	to	read	

UW CSE 401 Winter 2017 A-7

Requirements	&	Grading	

•  Roughly	
– 50%	project,	done	with	a	partner	
– 15%	individual	wrijen	homework	
– 15%	midterm	exam		
– 20%	final	exam	
We	reserve	the	right	to	adjust	as	needed	

UW CSE 401 Winter 2017 A-8

Academic	Integrity	

•  We	want	a	collegial	group	helping	each	other	succeed!	
•  But:	you	must	never	misrepresent	work	done	by	
someone	else	as	your	own,	without	proper	credit	if	
appropriate,	or	assist	others	to	do	the	same	

•  Read	the	course	policy	carefully	
•  We	trust	you	to	behave	ethically	
–  I	have	lijle	sympathy	for	violaCons	of	that	trust	
–  Honest	work	is	the	most	important	feature	of	a	university	
(or	engineering	or	business).		Anything	less	disrespects	
your	instructor,	your	colleagues,	and	yourself	

UW CSE 401 Winter 2017 A-9

CSE	401	Course	Project	

•  Best	way	to	learn	about	compilers	is	to	build	one	
•  Course	project	
– MiniJava	compiler:	classes,	objects,	etc.	

•  Core	parts	of	Java	–	essenCals	only	
•  Originally	from	Appel	textbook	(but	you	won’t	need	that)	

– Generate	executable	x86-64	code	&	run	it	
–  Completed	in	steps	through	the	quarter	

•  Where	you	wind	up	at	the	end	is	the	most	important	part,	
but	there	are	intermediate	milestone	deadlines	to	keep	you	
on	schedule	and	provide	feedback	at	important	points	

UW CSE 401 Winter 2017 A-10

Project	Groups	

•  You	should	work	in	pairs	
– Pick	a	partner	now	to	work	with	throughout	
quarter	–	will	need	this	info	early	next	week	

•  We’ll	provide	accounts	on	department	git	
server	(gitlab)	for	groups	to	store	and	
synchronize	their	work	&	we’ll	get	files	from	
there	for	grading/feedback	
– How	many	people	have	used	gitlab?		git?	

UW CSE 401 Winter 2017 A-11

Books	

•  Four	good	books;	will	put	on	reserve	in	
the	engineering	library	if	anyone	wants:	
– Cooper	&	Torczon,	Engineering	a	Compiler.	
“Official	text”		

– Appel,	Modern	Compiler	Implementa3on	in	
Java,	2nd	ed.	MiniJava	is	from	here.	

– Aho,	Lam,	Sethi,	Ullman,	“Dragon	Book”	
– Fischer,	Cytron,	LeBlanc,	Cra6ing	a	Compiler	

UW CSE 401 Winter 2017 A-12

And	the	point	is…		

•  How	do	we	execute	something	like	this?	

int nPos = 0;
int k = 0;
while (k < length) {
 if (a[k] > 0) {
 nPos++;
 }

}
	

•  The	computer	only	knows	1’s	&	0’s	-	i.e.,	
encodings	of	instrucCons	and	data	

UW CSE 401 Winter 2017 A-13

Structure	of	a	Compiler	

•  At	a	high	level,	a	compiler	has	two	pieces:	
– Front	end:	analysis	

•  Read	source	program	and	discover	its	structure	and	
meaning	

– Back	end:	synthesis	
•  Generate	equivalent	target	language	program	

UW CSE 401 Winter 2017 A-14

Source Target Front End Back End

Compiler	must…	

•  Recognize	legal	programs	(&	complain	about	illegal	
ones)	

•  Generate	correct	code	
–  Compiler	can	ajempt	to	improve	(“opCmize”)	code,	but	
must	not	change	behavior	(meaning)	

•  Manage	runCme	storage	of	all	variables/data	
•  Agree	with	OS	&	linker	on	target	format	

UW CSE 401 Winter 2017 A-15

Source Target Front End Back End

ImplicaCons	

•  Phases	communicate	using	some	sort	of	
Intermediate	RepresentaCon(s)	(IR)	
–  Front	end	maps	source	into	IR	
–  Back	end	maps	IR	to	target	machine	code	
–  Oken	mulCple	IRs	–	higher	level	at	first,	lower	level	in	later	
phases	

UW CSE 401 Winter 2017 A-16

Source Target Front End Back End

Front	End	

•  Usually	split	into	two	parts	
–  Scanner:	Responsible	for	converCng	character	stream	to	
token	stream:	keywords,	operators,	variables,	constants,	…	
•  Also:	strips	out	white	space,	comments	

–  Parser:	Reads	token	stream;	generates	IR	
•  Either	here	or	shortly	aker,	perform	semanCcs	analysis	to	check	
for	things	like	type	errors,	etc.	

•  Both	of	these	can	be	generated	automaCcally	
–  Use	a	formal	grammar	to	specify	the	source	language		
–  Tools	read	the	grammar	and	generate	scanner	&	parser	
(lex/yacc	or	flex/bison	for	C/C++,	JFlex/CUP	for	Java)	

UW CSE 401 Winter 2017 A-17

Scanner Parser source tokens IR

Scanner	Example	

•  Input	text	
// this statement does very little
if (x >= y) y = 42;

•  Token	Stream

–  Notes:	tokens	are	atomic	items,	not	character	strings;	
comments	&	whitespace	are	not	tokens	(in	most	languages	–	
counterexamples:	Python	indenCng,	Ruby	newlines)	
•  Tokens	may	carry	associated	data	(e.g.,	int	value,	variable	name)	

UW CSE 401 Winter 2017 A-18

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Parser	Output	(IR)	
•  Given	token	stream	from	scanner,	the	parser	
must	produce	output	that	captures	the	meaning	
of	the	program	

•  Most	common	output	from	a	parser	is	an	
abstract	syntax	tree	
–  EssenCal	meaning	of	program	without	syntacCc	noise	
– Nodes	are	operaCons,	children	are	operands	

•  Many	different	forms	
–  Engineering	tradeoffs	have	changed	over	Cme	
–  Tradeoffs	(and	IRs)	can	also	vary	between	different	
phases	of	a	single	compiler	

UW CSE 401 Winter 2017 A-19

Parser	Example	

•  Token	Stream	 •  Abstract	Syntax	Tree	

UW CSE 401 Winter 2017 A-20

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Original source program:
 // this statement does very little
if (x >= y) y = 42;

StaCc	SemanCc	Analysis	

•  During	or	aker	parsing,	check	that	the	program	is	
legal	and	collect	info	for	the	back	end	
–  Type	checking	
–  Check	language	requirements	like	proper	
declaraCons,	etc.	

–  Preliminary	resource	allocaCon	
–  Collect	other	informaCon	needed	by	back	end	analysis	
and	code	generaCon	

•  Key	data	structure:	Symbol	Table(s)	
– Maps	names	->	meaning/types/details	

UW CSE 401 Winter 2017 A-21

Back	End	

•  ResponsibiliCes	
– Translate	IR	into	target	machine	code	
– Should	produce	“good”	code	

•  “good”	=	fast,	compact,	low	power	(pick	some)	
•  OpCmizaCon	phase	translates	correct	code	into	
semanCcally	equivalent	“bejer”	code	

– Should	use	machine	resources	effecCvely	
•  Registers	
•  InstrucCons	
•  Memory	hierarchy	

UW CSE 401 Winter 2017 A-22

Back	End	Structure	

•  Typically	split	into	two	major	parts	
– “OpCmizaCon”	–	code	improvement	

•  Examples:	common	subexpression	eliminaCon,	
constant	folding,	code	moCon	(move	invariant	
computaCons	outside	of	loops)	
•  OpCmizaCon	phases	oken	interleaved	with	analysis	

– Target	Code	GeneraCon	(machine	specific)	
•  InstrucCon	selecCon	&	scheduling,	register	allocaCon	

– Usually	walk	the	AST	to	generate	lower-level	
intermediate	code	before	opCmizaCon	

UW CSE 401 Winter 2017 A-23

The	Result	

•  Input	
if (x >= y)
 y = 42;

•  Output	

		mov			eax,[ebp+16]	
		cmp			eax,[ebp-8]	
		jl								L17	
		mov				[ebp-8],42	
L17:	

UW CSE 401 Winter 2017 A-24

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Interpreters	&	Compilers	

•  Programs	can	be	compiled	or	interpreted	(or	
someCmes	both)	

•  Compiler	
– A	program	that	translates	a	program	from	one	
language	(the	source)	to	another	(the	target)	
•  Languages	are	someCmes	even	the	same(!)	

•  Interpreter	
– A	program	that	reads	a	source	program	and	produces	
the	results	of	execuCng	that	program	on	some	input	

UW CSE 401 Winter 2017 A-25

Common	Issues	

•  Compilers	and	interpreters	both	must	read	
the	input	–	a	stream	of	characters	–	and	
“understand”	it:	front-end	analysis	phase	

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

UW CSE 401 Winter 2017 A-26

Compiler	

•  Read	and	analyze	enCre	program	
•  Translate	to	semanCcally	equivalent	program	
in	another	language	
– Presumably	easier	or	more	efficient	to	execute	

•  Offline	process	
•  Tradeoff:	compile-Cme	overhead	
(preprocessing)	vs	execuCon	performance	

UW CSE 401 Winter 2017 A-27

Typically	implemented	with	Compilers	

•  FORTRAN,	C,	C++,	COBOL,	many	other	
programming	languages,	(La)TeX,	SQL	
(databases),	VHDL,	many	others	

•  ParCcularly	appropriate	if	significant	
opCmizaCon	wanted/needed	

UW CSE 401 Winter 2017 A-28

Interpreter	
•  Interpreter	
–  Typically	implemented	as	an	“execuCon	engine”	
–  Program	analysis	interleaved	with	execuCon:		

	running	=	true;	
	while	(running)	{	
					analyze	next	statement;	
					execute	that	statement;	
	}	

– Usually	requires	repeated	analysis	of	individual	
statements	(parCcularly	in	loops,	funcCons)	
•  But	hybrid	approaches	can	avoid	some	of	this	overhead	

–  But:	immediate	execuCon,	good	debugging/interacCon,	
etc.	

UW CSE 401 Winter 2017 A-29

Oken	implemented	with	interpreters	

•  Javascript,	PERL,	Python,	Ruby,	awk,	sed,	
shells	(bash),	Scheme/Lisp/ML/OCaml,	
postscript/pdf,	machine	simulators	

•  ParCcularly	efficient	if	interpreter	overhead	is	
low	relaCve	to	execuCon	cost	of	individual	
statements	
– But	even	if	not	(machine	simulators),	flexibility,	
immediacy,	or	portability	may	be	worth	it	

UW CSE 401 Winter 2017 A-30

Hybrid	approaches	

•  Compiler	generates	byte	code	intermediate	
language,	e.g.	compile	Java	source	to	Java	Virtual	
Machine	.class	files,	then	

•  Interpret	byte	codes	directly,	or	
•  Compile	some	or	all	byte	codes	to	naCve	code	
–  VariaCon:	Just-In-Time	compiler	(JIT)	–	detect	hot	spots	
&	compile	on	the	fly	to	naCve	code		

•  Also	wide	use	for	Javascript,	many	funcConal	and	
other	languages	(Haskell,	ML,	Racket,	Ruby),	C#	
and	Microsok	Common	Language	RunCme,	others	

UW CSE 401 Winter 2017 A-31

Why	Study	Compilers?		(1)	

•  Become	a	bejer	programmer(!)	
–  Insight	into	interacCon	between	languages,	compilers,	
and	hardware	

– Understanding	of	implementaCon	techniques,	how	
code	maps	to	hardware	

–  Bejer	intuiCon	about	what	your	code	does	
– Understanding	how	compilers	opCmize	code	helps	
you	write	code	that	is	easier	to	opCmize	
•  And	avoid	wasCng	Cme	doing	“opCmizaCons”	that	the	
compiler	will	do	as	well	or	bejer	–	parCcularly	if	you	don’t	
try	to	get	too	clever	

UW CSE 401 Winter 2017 A-32

Why	Study	Compilers?		(2)	

•  Compiler	techniques	are	everywhere	
– Parsing	(“lijle”	languages,	interpreters,	XML)	
– Sokware	tools	(verifiers,	checkers,	…)	
– Database	engines,	query	languages	
– AI,	etc.:	domain-specific	languages	
– Text	processing		

•  Tex/LaTex	->	dvi	->	Postscript	->	pdf	
– Hardware:	VHDL;	model-checking	tools	
– MathemaCcs	(MathemaCca,	Matlab,	SAGE)	

UW CSE 401 Winter 2017 A-33

Why	Study	Compilers?		(3)	

•  FascinaCng	blend	of	theory	and	engineering	
–  Lots	of	beauCful	theory	around	compilers	

•  Parsing,	scanning,	staCc	analysis	
–  InteresCng	engineering	challenges	and	tradeoffs,	
parCcularly	in	opCmizaCon	(code	improvement)	
•  Ordering	of	opCmizaCon	phases	
•  What	works	for	some	programs	can	be	bad	for	others	

–  Plus	some	very	difficult	problems	(NP-hard	or	worse)	
•  E.g.,	register	allocaCon	is	equivalent	to	graph	coloring	
•  Need	to	come	up	with	good-enough	approximaCons/
heurisCcs	

UW CSE 401 Winter 2017 A-34

Why	Study	Compilers?		(4)	

•  Draws	ideas	from	many	parts	of	CSE	
–  AI:	Greedy	algorithms,	heurisCc	search	
–  Algorithms:	graphs,	dynamic	programming,	approximaCon	
–  Theory:	Grammars,	DFAs	and	PDAs,	pajern	matching,	
fixed-point	algorithms	

–  Systems:	AllocaCon	&	naming,	synchronizaCon,	locality	
–  Architecture:	pipelines,	instrucCon	set	use,	memory	
hierarchy	management,	locality	

UW CSE 401 Winter 2017 A-35

Why	Study	Compilers?		(5)	

•  You	might	even	write	a	compiler	some	day!	

•  You	will	write	parsers	and	interpreters	for	
lijle	languages,	if	not	bigger	things	
– Command	languages,	configuraCon	files,	XML,	
network	protocols,	…	

•  And	if	you	like	working	with	compilers	and	are	
good	at	it	there	are	many	jobs	available…	

UW CSE 401 Winter 2017 A-36

Some	History	(1)	

•  1950’s.		Existence	proof	
– FORTRAN	I	(1954)	–	compeCCve	with	hand-
opCmized	code	

•  1960’s	
– New	languages:	ALGOL,	LISP,	COBOL,	SIMULA	
– Formal	notaCons	for	syntax,	esp.	BNF	
– Fundamental	implementaCon	techniques	

•  Stack	frames,	recursive	procedures,	etc.	

UW CSE 401 Winter 2017 A-37

Some	History	(2)	

•  1970’s	
– Syntax:	formal	methods	for	producing	compiler	
front-ends;	many	theorems	

•  Late	1970’s,	1980’s	
– New	languages	(funcConal;	object-oriented	-	
Smalltalk)	

– New	architectures	(RISC	machines,	parallel	
machines,	memory	hierarchy	issues)	

– More	ajenCon	to	back-end	issues	

UW CSE 401 Winter 2017 A-38

Some	History	(3)	

•  1990s	
– Techniques	for	compiling	objects	and	classes,	
efficiency	in	the	presence	of	dynamic	dispatch	and	
small	methods	(Self,	Smalltalk	–	now	common	in	
JVMs,	etc.)	

–  Just-in-Cme	compilers	(JITs)	
– Compiler	technology	criCcal	to	effecCve	use	of	
new	hardware	(RISC,	parallel	machines,	complex	
memory	hierarchies)	

UW CSE 401 Winter 2017 A-39

Some	History	(4)	

•  Last	decade	
– CompilaCon	techniques	in	many	new	places	

•  Sokware	analysis,	verificaCon,	security	
– Phased	compilaCon	–	blurring	the	lines	between	
“compile	Cme”	and	“runCme”	
•  Using	machine	learning	techniques	to	control	
opCmizaCons(!)	

– Dynamic	languages	–	e.g.,	JavaScript,	…	
– The	new	800	lb	gorilla	-	mulCcore	

UW CSE 401 Winter 2017 A-40

Compiler	(and	related)	Turing	Awards	

•  1966	Alan	Perlis	
•  1972	Edsger	Dijkstra	
•  1974	Donald	Knuth	
•  1976	Michael	Rabin	and	

Dana	Scoj	
•  1977	John	Backus	
•  1978	Bob	Floyd	
•  1979	Ken	Iverson	
•  1980	Tony	Hoare	

•  1984	Niklaus	Wirth	
•  1987	John	Cocke	
•  1991	Robin	Milner	
•  2001	Ole-Johan	Dahl	and	

Kristen	Nygaard	
•  2003	Alan	Kay	
•  2005	Peter	Naur	
•  2006	Fran	Allen	
•  2008	Barbara	Liskov	

UW CSE 401 Winter 2017 41

Any	quesCons?	

•  Your	job	is	to	ask	quesCons	to	be	sure	you	
understand	what’s	happening	and	to	slow	me	
down	
– Otherwise,	I’ll	barrel	on	ahead	J	

UW CSE 401 Winter 2017 A-42

Coming	AjracCons	

•  Quick	review	of	formal	grammars	
•  Lexical	analysis	–	scanning	&	regular	
expressions	
– Background	for	first	part	of	the	project	
– StarCng	in	secCon	tomorrow!	

•  Followed	by	parsing	…	

•  Start	reading:	ch.	1,	2.1-2.4	
UW CSE 401 Winter 2017 A-43

Before	next	Cme…	
•  If	you	are	trying	to	add	the	class	please	follow	the	
instrucCons	that	we’ll	show	right	now…	

•  Familiarize	yourself	with	the	course	web	site	

•  Read	syllabus	and	academic	integrity	policy	
	
•  Post	a	followup	message	on	the	discussion	board	

•  Find	a	partner!	
UW CSE 401 Winter 2017 A-44

