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Agenda	

•  IntroducCons	
•  Administrivia	
•  What’s	a	compiler?	
•  Why	you	want	to	take	this	course	
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Who:	Course	staff	
•  Instructor:		Hal	Perkins:	UW	faculty	for	a	while;	
CSE	401	veteran	(+	other	compiler	courses)	

•  TAs:	Erin	Peach,	Laura	Vonessen	

•  Get	to	know	us	–	we’re	here	to	help	you	succeed!	

•  Office	hours	posted	now,	but	quesCons:	
–  Posted	Cmes	are	4:30-5:30	M-F.		Could	switch	to	4-5	
on	Tue.-Thur.		What	would	y’all	like?	

–  In	the	lab	or	separate	TA	room?	
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Credits	
•  Some	direct	ancestors	of	this	course:	
– UW	CSE	401	(Chambers,	Snyder,	Notkin,	Perkins,	
Ringenburg,	Henry,	…)	

– UW	CSE	PMP	582/501	(Perkins)	
–  Cornell	CS	412-3	(Teitelbaum,	Perkins)	
–  Rice	CS	412	(Cooper,	Kennedy,	Torczon)	
– Many	books	(Appel;	Cooper/Torczon;	Aho,	[[Lam,]	
Sethi,]	Ullman	[Dragon	Book],	Fischer,	[Cytron	,]	
LeBlanc;	Muchnick,	…)	

•  [Won’t	ajempt	to	ajribute	everything	–	and	
some	of	the	details	are	lost	in	the	haze	of	Cme.]	
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So	whadda	ya	know?	

•  Official	prerequisites:	
– CSE	332	(data	abstracCons)	

•  and	therefore	CSE	311	(FoundaCons)	
– CSE	351	(hardware/sokware	interface,	x86_64)	

•  Also	useful,	but	not	required:	
– CSE	331	(sokware	design	&	implementaCon)	
– CSE	341	(programming	languages)	
– Who’s	taken	these?	
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Lectures	&	SecCons	

•  Both	required	

•  All	material	posted,	but	they	are	visual	aids	
–  Arrive	punctually	and	pay	ajenCon	(&	take	notes!)	
–  If	doing	so	doesn’t	save	you	Cme,	one	of	us	is	messing	up!	

•  SecCons:	addiConal	examples	and	exercises	plus	
project	details	and	tools	

•  AddiConal	project	and	other	material	posted	
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Staying	in	touch	

•  Course	web	site		
•  Discussion	board	
– For	anything	related	to	the	course	
–  Join	in!		Help	each	other	out.		Staff	will	contribute.	

•  Mailing	list	
– You	are	automaCcally	subscribed	if	you	are	
registered	

– Will	keep	this	fairly	low-volume;	limited	to	things	
that	everyone	needs	to	read	
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Requirements	&	Grading	

•  Roughly	
– 50%	project,	done	with	a	partner	
– 15%	individual	wrijen	homework	
– 15%	midterm	exam		
– 20%	final	exam	
We	reserve	the	right	to	adjust	as	needed	

UW CSE 401 Winter 2017 A-8 



Academic	Integrity	

•  We	want	a	collegial	group	helping	each	other	succeed!	
•  But:	you	must	never	misrepresent	work	done	by	
someone	else	as	your	own,	without	proper	credit	if	
appropriate,	or	assist	others	to	do	the	same	

•  Read	the	course	policy	carefully	
•  We	trust	you	to	behave	ethically	
–  I	have	lijle	sympathy	for	violaCons	of	that	trust	
–  Honest	work	is	the	most	important	feature	of	a	university	
(or	engineering	or	business).		Anything	less	disrespects	
your	instructor,	your	colleagues,	and	yourself	
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CSE	401	Course	Project	

•  Best	way	to	learn	about	compilers	is	to	build	one	
•  Course	project	
– MiniJava	compiler:	classes,	objects,	etc.	

•  Core	parts	of	Java	–	essenCals	only	
•  Originally	from	Appel	textbook	(but	you	won’t	need	that)	

– Generate	executable	x86-64	code	&	run	it	
–  Completed	in	steps	through	the	quarter	

•  Where	you	wind	up	at	the	end	is	the	most	important	part,	
but	there	are	intermediate	milestone	deadlines	to	keep	you	
on	schedule	and	provide	feedback	at	important	points	
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Project	Groups	

•  You	should	work	in	pairs	
– Pick	a	partner	now	to	work	with	throughout	
quarter	–	will	need	this	info	early	next	week	

•  We’ll	provide	accounts	on	department	git	
server	(gitlab)	for	groups	to	store	and	
synchronize	their	work	&	we’ll	get	files	from	
there	for	grading/feedback	
– How	many	people	have	used	gitlab?		git?	
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Books	

•  Four	good	books;	will	put	on	reserve	in	
the	engineering	library	if	anyone	wants:	
– Cooper	&	Torczon,	Engineering	a	Compiler.	
“Official	text”		

– Appel,	Modern	Compiler	Implementa3on	in	
Java,	2nd	ed.	MiniJava	is	from	here.	

– Aho,	Lam,	Sethi,	Ullman,	“Dragon	Book”	
– Fischer,	Cytron,	LeBlanc,	Cra6ing	a	Compiler	
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And	the	point	is…		

•  How	do	we	execute	something	like	this?	
 
int nPos = 0; 
int k = 0; 
while (k < length) { 
 if (a[k] > 0) { 
    nPos++; 
 } 

} 
	

•  The	computer	only	knows	1’s	&	0’s	-	i.e.,	
encodings	of	instrucCons	and	data	
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Structure	of	a	Compiler	

•  At	a	high	level,	a	compiler	has	two	pieces:	
– Front	end:	analysis	

•  Read	source	program	and	discover	its	structure	and	
meaning	

– Back	end:	synthesis	
•  Generate	equivalent	target	language	program	
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Compiler	must…	

•  Recognize	legal	programs	(&	complain	about	illegal	
ones)	

•  Generate	correct	code	
–  Compiler	can	ajempt	to	improve	(“opCmize”)	code,	but	
must	not	change	behavior	(meaning)	

•  Manage	runCme	storage	of	all	variables/data	
•  Agree	with	OS	&	linker	on	target	format	
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ImplicaCons	

•  Phases	communicate	using	some	sort	of	
Intermediate	RepresentaCon(s)	(IR)	
–  Front	end	maps	source	into	IR	
–  Back	end	maps	IR	to	target	machine	code	
–  Oken	mulCple	IRs	–	higher	level	at	first,	lower	level	in	later	
phases	
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Front	End	

•  Usually	split	into	two	parts	
–  Scanner:	Responsible	for	converCng	character	stream	to	
token	stream:	keywords,	operators,	variables,	constants,	…	
•  Also:	strips	out	white	space,	comments	

–  Parser:	Reads	token	stream;	generates	IR	
•  Either	here	or	shortly	aker,	perform	semanCcs	analysis	to	check	
for	things	like	type	errors,	etc.	

•  Both	of	these	can	be	generated	automaCcally	
–  Use	a	formal	grammar	to	specify	the	source	language		
–  Tools	read	the	grammar	and	generate	scanner	&	parser	
(lex/yacc	or	flex/bison	for	C/C++,	JFlex/CUP	for	Java)	
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Scanner	Example	

•  Input	text	
// this statement does very little 
if (x >= y) y = 42; 

•  Token	Stream 

–  Notes:	tokens	are	atomic	items,	not	character	strings;	
comments	&	whitespace	are	not	tokens	(in	most	languages	–	
counterexamples:	Python	indenCng,	Ruby	newlines)	
•  Tokens	may	carry	associated	data	(e.g.,	int	value,	variable	name)	
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IF LPAREN ID(x) GEQ ID(y) 

RPAREN ID(y) BECOMES INT(42) SCOLON 



Parser	Output	(IR)	
•  Given	token	stream	from	scanner,	the	parser	
must	produce	output	that	captures	the	meaning	
of	the	program	

•  Most	common	output	from	a	parser	is	an	
abstract	syntax	tree	
–  EssenCal	meaning	of	program	without	syntacCc	noise	
– Nodes	are	operaCons,	children	are	operands	

•  Many	different	forms	
–  Engineering	tradeoffs	have	changed	over	Cme	
–  Tradeoffs	(and	IRs)	can	also	vary	between	different	
phases	of	a	single	compiler	
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Parser	Example	

•  Token	Stream	 •  Abstract	Syntax	Tree	
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IF LPAREN ID(x) 

GEQ ID(y) RPAREN 

ID(y) BECOMES 

INT(42) SCOLON 

ifStmt 

>= 

ID(x) ID(y) 

assign 

ID(y) INT(42) 

Original source program: 
 // this statement does very little 
if (x >= y) y = 42; 



StaCc	SemanCc	Analysis	

•  During	or	aker	parsing,	check	that	the	program	is	
legal	and	collect	info	for	the	back	end	
–  Type	checking	
–  Check	language	requirements	like	proper	
declaraCons,	etc.	

–  Preliminary	resource	allocaCon	
–  Collect	other	informaCon	needed	by	back	end	analysis	
and	code	generaCon	

•  Key	data	structure:	Symbol	Table(s)	
– Maps	names	->	meaning/types/details	
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Back	End	

•  ResponsibiliCes	
– Translate	IR	into	target	machine	code	
– Should	produce	“good”	code	

•  “good”	=	fast,	compact,	low	power	(pick	some)	
•  OpCmizaCon	phase	translates	correct	code	into	
semanCcally	equivalent	“bejer”	code	

– Should	use	machine	resources	effecCvely	
•  Registers	
•  InstrucCons	
•  Memory	hierarchy	
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Back	End	Structure	

•  Typically	split	into	two	major	parts	
– “OpCmizaCon”	–	code	improvement	

•  Examples:	common	subexpression	eliminaCon,	
constant	folding,	code	moCon	(move	invariant	
computaCons	outside	of	loops)	
•  OpCmizaCon	phases	oken	interleaved	with	analysis	

– Target	Code	GeneraCon	(machine	specific)	
•  InstrucCon	selecCon	&	scheduling,	register	allocaCon	

– Usually	walk	the	AST	to	generate	lower-level	
intermediate	code	before	opCmizaCon	
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The	Result	

•  Input	
if (x >= y)  
 y = 42; 

•  Output	

		mov			eax,[ebp+16]	
		cmp			eax,[ebp-8]	
		jl								L17	
		mov				[ebp-8],42	
L17:	

UW CSE 401 Winter 2017 A-24 

ifStmt 

>= 

ID(x) ID(y) 

assign 

ID(y) INT(42) 



Interpreters	&	Compilers	

•  Programs	can	be	compiled	or	interpreted	(or	
someCmes	both)	

•  Compiler	
– A	program	that	translates	a	program	from	one	
language	(the	source)	to	another	(the	target)	
•  Languages	are	someCmes	even	the	same(!)	

•  Interpreter	
– A	program	that	reads	a	source	program	and	produces	
the	results	of	execuCng	that	program	on	some	input	

UW CSE 401 Winter 2017 A-25 



Common	Issues	

•  Compilers	and	interpreters	both	must	read	
the	input	–	a	stream	of	characters	–	and	
“understand”	it:	front-end	analysis	phase	

w h i l e ( k < l e n g t h ) { <nl> <tab> i f ( a [ k ] > 0  
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> } 
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Compiler	

•  Read	and	analyze	enCre	program	
•  Translate	to	semanCcally	equivalent	program	
in	another	language	
– Presumably	easier	or	more	efficient	to	execute	

•  Offline	process	
•  Tradeoff:	compile-Cme	overhead	
(preprocessing)	vs	execuCon	performance	
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Typically	implemented	with	Compilers	

•  FORTRAN,	C,	C++,	COBOL,	many	other	
programming	languages,	(La)TeX,	SQL	
(databases),	VHDL,	many	others	

•  ParCcularly	appropriate	if	significant	
opCmizaCon	wanted/needed	
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Interpreter	
•  Interpreter	
–  Typically	implemented	as	an	“execuCon	engine”	
–  Program	analysis	interleaved	with	execuCon:		

	running	=	true;	
	while	(running)	{	
					analyze	next	statement;	
					execute	that	statement;	
	}	

– Usually	requires	repeated	analysis	of	individual	
statements	(parCcularly	in	loops,	funcCons)	
•  But	hybrid	approaches	can	avoid	some	of	this	overhead	

–  But:	immediate	execuCon,	good	debugging/interacCon,	
etc.	
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Oken	implemented	with	interpreters	

•  Javascript,	PERL,	Python,	Ruby,	awk,	sed,	
shells	(bash),	Scheme/Lisp/ML/OCaml,	
postscript/pdf,	machine	simulators	

•  ParCcularly	efficient	if	interpreter	overhead	is	
low	relaCve	to	execuCon	cost	of	individual	
statements	
– But	even	if	not	(machine	simulators),	flexibility,	
immediacy,	or	portability	may	be	worth	it	
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Hybrid	approaches	

•  Compiler	generates	byte	code	intermediate	
language,	e.g.	compile	Java	source	to	Java	Virtual	
Machine	.class	files,	then	

•  Interpret	byte	codes	directly,	or	
•  Compile	some	or	all	byte	codes	to	naCve	code	
–  VariaCon:	Just-In-Time	compiler	(JIT)	–	detect	hot	spots	
&	compile	on	the	fly	to	naCve	code		

•  Also	wide	use	for	Javascript,	many	funcConal	and	
other	languages	(Haskell,	ML,	Racket,	Ruby),	C#	
and	Microsok	Common	Language	RunCme,	others	
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Why	Study	Compilers?		(1)	

•  Become	a	bejer	programmer(!)	
–  Insight	into	interacCon	between	languages,	compilers,	
and	hardware	

– Understanding	of	implementaCon	techniques,	how	
code	maps	to	hardware	

–  Bejer	intuiCon	about	what	your	code	does	
– Understanding	how	compilers	opCmize	code	helps	
you	write	code	that	is	easier	to	opCmize	
•  And	avoid	wasCng	Cme	doing	“opCmizaCons”	that	the	
compiler	will	do	as	well	or	bejer	–	parCcularly	if	you	don’t	
try	to	get	too	clever	
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Why	Study	Compilers?		(2)	

•  Compiler	techniques	are	everywhere	
– Parsing	(“lijle”	languages,	interpreters,	XML)	
– Sokware	tools	(verifiers,	checkers,	…)	
– Database	engines,	query	languages	
– AI,	etc.:	domain-specific	languages	
– Text	processing		

•  Tex/LaTex	->	dvi	->	Postscript	->	pdf	
– Hardware:	VHDL;	model-checking	tools	
– MathemaCcs	(MathemaCca,	Matlab,	SAGE)	
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Why	Study	Compilers?		(3)	

•  FascinaCng	blend	of	theory	and	engineering	
–  Lots	of	beauCful	theory	around	compilers	

•  Parsing,	scanning,	staCc	analysis	
–  InteresCng	engineering	challenges	and	tradeoffs,	
parCcularly	in	opCmizaCon	(code	improvement)	
•  Ordering	of	opCmizaCon	phases	
•  What	works	for	some	programs	can	be	bad	for	others	

–  Plus	some	very	difficult	problems	(NP-hard	or	worse)	
•  E.g.,	register	allocaCon	is	equivalent	to	graph	coloring	
•  Need	to	come	up	with	good-enough	approximaCons/
heurisCcs	
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Why	Study	Compilers?		(4)	

•  Draws	ideas	from	many	parts	of	CSE	
–  AI:	Greedy	algorithms,	heurisCc	search	
–  Algorithms:	graphs,	dynamic	programming,	approximaCon	
–  Theory:	Grammars,	DFAs	and	PDAs,	pajern	matching,	
fixed-point	algorithms	

–  Systems:	AllocaCon	&	naming,	synchronizaCon,	locality	
–  Architecture:	pipelines,	instrucCon	set	use,	memory	
hierarchy	management,	locality	
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Why	Study	Compilers?		(5)	

•  You	might	even	write	a	compiler	some	day!	

•  You	will	write	parsers	and	interpreters	for	
lijle	languages,	if	not	bigger	things	
– Command	languages,	configuraCon	files,	XML,	
network	protocols,	…	

•  And	if	you	like	working	with	compilers	and	are	
good	at	it	there	are	many	jobs	available…	
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Some	History	(1)	

•  1950’s.		Existence	proof	
– FORTRAN	I	(1954)	–	compeCCve	with	hand-
opCmized	code	

•  1960’s	
– New	languages:	ALGOL,	LISP,	COBOL,	SIMULA	
– Formal	notaCons	for	syntax,	esp.	BNF	
– Fundamental	implementaCon	techniques	

•  Stack	frames,	recursive	procedures,	etc.	
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Some	History	(2)	

•  1970’s	
– Syntax:	formal	methods	for	producing	compiler	
front-ends;	many	theorems	

•  Late	1970’s,	1980’s	
– New	languages	(funcConal;	object-oriented	-	
Smalltalk)	

– New	architectures	(RISC	machines,	parallel	
machines,	memory	hierarchy	issues)	

– More	ajenCon	to	back-end	issues	
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Some	History	(3)	

•  1990s	
– Techniques	for	compiling	objects	and	classes,	
efficiency	in	the	presence	of	dynamic	dispatch	and	
small	methods	(Self,	Smalltalk	–	now	common	in	
JVMs,	etc.)	

–  Just-in-Cme	compilers	(JITs)	
– Compiler	technology	criCcal	to	effecCve	use	of	
new	hardware	(RISC,	parallel	machines,	complex	
memory	hierarchies)	
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Some	History	(4)	

•  Last	decade	
– CompilaCon	techniques	in	many	new	places	

•  Sokware	analysis,	verificaCon,	security	
– Phased	compilaCon	–	blurring	the	lines	between	
“compile	Cme”	and	“runCme”	
•  Using	machine	learning	techniques	to	control	
opCmizaCons(!)	

– Dynamic	languages	–	e.g.,	JavaScript,	…	
– The	new	800	lb	gorilla	-	mulCcore	
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Compiler	(and	related)	Turing	Awards	

•  1966	Alan	Perlis	
•  1972	Edsger	Dijkstra	
•  1974	Donald	Knuth	
•  1976	Michael	Rabin	and	

Dana	Scoj	
•  1977	John	Backus	
•  1978	Bob	Floyd	
•  1979	Ken	Iverson	
•  1980	Tony	Hoare	

•  1984	Niklaus	Wirth	
•  1987	John	Cocke	
•  1991	Robin	Milner	
•  2001	Ole-Johan	Dahl	and	

Kristen	Nygaard	
•  2003	Alan	Kay	
•  2005	Peter	Naur	
•  2006	Fran	Allen	
•  2008	Barbara	Liskov	
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Any	quesCons?	

•  Your	job	is	to	ask	quesCons	to	be	sure	you	
understand	what’s	happening	and	to	slow	me	
down	
– Otherwise,	I’ll	barrel	on	ahead	J	
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Coming	AjracCons	

•  Quick	review	of	formal	grammars	
•  Lexical	analysis	–	scanning	&	regular	
expressions	
– Background	for	first	part	of	the	project	
– StarCng	in	secCon	tomorrow!	

•  Followed	by	parsing	…	

•  Start	reading:	ch.	1,	2.1-2.4	
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Before	next	Cme…	
•  If	you	are	trying	to	add	the	class	please	follow	the	
instrucCons	that	we’ll	show	right	now…	

•  Familiarize	yourself	with	the	course	web	site	

•  Read	syllabus	and	academic	integrity	policy	
	
•  Post	a	followup	message	on	the	discussion	board	

•  Find	a	partner!	
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