
CSE	401	–	Compilers	

Parsing	&	Context-Free	Grammars	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 C-1

Administrivia	

•  Reminders:		
–  Project	partner	signup.		Please	fill	out	the	form	with	
your	and	your	partner’s	names	and	cse	neOds	

•  Only	one	form	per	group,	please;	+1	point	each	if	it’s	right	
•  Please	finish	by	Wed.	mid-day	
•  Who’s	sOll	looking	for	a	partner?	

–  hw1	due	Thur.	night	(regexps,	etc.)	
–  Post	a	followup	on	the	discussion	board	
– Use	cse401-staff@cs…	if	you	need	to	send	email	

UW CSE 401 Winter 2017 C-2

Agenda	for	Today	

•  Parsing	overview	
•  Context	free	grammars		
•  Ambiguous	grammars	
•  Reading:	Cooper	&	Torczon	3.1-3.2	

– Dragon	book	is	also	parOcularly	strong	on	
grammars	and	languages	

UW CSE 401 Winter 2017 C-3

SyntacOc	Analysis	/	Parsing	

•  Goal:	Convert	token	stream	to	an	abstract	
syntax	tree	

•  Abstract	syntax	tree	(AST):	
– Captures	the	structural	features	of	the	program	
– Primary	data	structure	for	next	phases	of	
compilaOon	

•  Plan	
– Study	how	context-free	grammars	specify	syntax	
– Study	algorithms	for	parsing	and	building	ASTs	

UW CSE 401 Winter 2017 C-4

Context-free	Grammars	
•  The	syntax	of	most	programming	languages	can	be	
specified	by	a	context-free	grammar	(CGF)	

•  Compromise	between	
–  REs:	can’t	nest	or	specify	recursive	structure		
–  General	grammars:	too	powerful,	undecidable		

•  Context-free	grammars	are	a	sweet	spot	
–  Powerful	enough	to	describe	nesOng,	recursion	
–  Easy	to	parse;	but	also	allow	restricOons	for	speed	

•  Not	perfect	
–  Cannot	capture	semanOcs,	like	“must	declare	every	
variable”	or	“must	be	int”	–	requires	later	semanOc	pass	

–  Can	be	ambiguous	

UW CSE 401 Winter 2017 C-5

DerivaOons	and	Parse	Trees	

•  DerivaOon:	a	sequence	of	expansion	steps,	
beginning	with	a	start	symbol	and	leading	to	a	
sequence	of	terminals	

•  Parsing:	inverse	of	derivaOon	
– Given	a	sequence	of	terminals	(aka	tokens)	want	
to	recover	(discover)	the	nonterminals	and	
structure,	i.e.,	the	parse	(concrete	syntax)	tree	

UW CSE 401 Winter 2017 C-6

Old	Example		

 a = 1 ; if (a + 1) b = 2 ;

UW CSE 401 Winter 2017 7

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt

expr expr

int id

id expr

int

id expr

int

G

w

Parsing	

•  Parsing:	Given	a	grammar	G		and	a	sentence	w	
in	L(G),	traverse	the	derivaOon	(parse	tree)	for	
w	in	some	standard	order	and	do	something	
useful	at	each	node	
– The	tree	might	not	be	produced	explicitly,	but	the	
control	flow	of	the	parser	will	correspond	to	a	
traversal	

UW CSE 401 Winter 2017 C-8

“Standard	Order”	

•  For	pracOcal	reasons	we	want	the	parser	to	be	
determinis6c	(no	backtracking),	and	we	want	
to	examine	the	source	program	from	le8	to	
right.	
–  (i.e.,	parse	the	program	in	linear	Ome	in	the	order	
it	appears	in	the	source	file)	

UW CSE 401 Winter 2017 C-9

Common	Orderings	

•  Top-down	
– Start	with	the	root	
– Traverse	the	parse	tree	depth-first,	lef-to-right	
(lefmost	derivaOon)	

– LL(k),	recursive-descent	
•  Boiom-up	

– Start	at	leaves	and	build	up	to	the	root	
•  EffecOvely	a	rightmost	derivaOon	in	reverse(!)	

– LR(k)	and	subsets	(LALR(k),	SLR(k),	etc.)	

UW CSE 401 Winter 2017 C-10

“Something	Useful”	

•  At	each	point	(node)	in	the	traversal,	perform	
some	semanOc	acOon	
–  Construct	nodes	of	full	parse	tree	(rare)	
–  Construct	abstract	syntax	tree	(AST)	(common)	
–  Construct	linear,	lower-level	representaOon	(ofen	
produced	by	traversing	iniOal	AST	in	later	phases	of	
producOon	compilers)	

– Generate	target	code	on	the	fly	(used	in	1-pass	
compiler;	not	common	in	producOon	compilers)		

•  Can’t	generate	great	code	in	one	pass,	–	but	useful	if	you	
need	a	quick	‘n	dirty	working	compiler	

UW CSE 401 Winter 2017 C-11

Context-Free	Grammars	

•  Formally,	a	grammar	G	is	a	tuple	<N,Σ,P,S>	
where	
– N	is	a	finite	set	of	non-terminal	symbols	
– Σ	is	a	finite	set	of	terminal	symbols	(alphabet)	
– P	is	a	finite	set	of	produc6ons	

•  A	subset	of	N	×	(N		∪	Σ)*	
– S	is	the	start	symbol,	a	disOnguished	element	of	N		

•  If	not	specified	otherwise,	this	is	usually	assumed	to	be	
the	non-terminal	on	the	lef	of	the	first	producOon	

UW CSE 401 Winter 2017 C-12

Standard	NotaOons	

a,	b,	c			elements	of	Σ	
w,	x,	y,	z			elements	of	Σ*	
A,	B,	C			elements	of	N	
X,	Y,	Z			elements	of	N∪Σ	
α,	β,	γ			elements	of	(N∪Σ)*	
A	➝	α	or	A	::=	α	if	<A,	α>	in	P		
	

UW CSE 401 Winter 2017 C-13

DerivaOon	RelaOons	(1)	

•  α	A	γ	=>	α	β	γ			iff		A	::=	β	in	P		
– derives	

•  A	=>*	α	if	there	is	a	chain	of	producOons	
starOng	with	A	that	generates	α	
–  transiOve	closure	

UW CSE 401 Winter 2017 C-14

DerivaOon	RelaOons	(2)	

•  w	A	γ	=>lm	w	β	γ			iff	A	::=	β	in	P		
– derives	lefmost	

•  α	A	w	=>rm	α	β	w			iff	A	::=	β	in	P		
– derives	rightmost	

•  We	will	only	be	interested	in	lefmost	and	
rightmost	derivaOons	–	not	random	orderings	

UW CSE 401 Winter 2017 C-15

Languages	

•  For	A	in	N,	define	L(A)	=	{	w	|	A	=>*	w	}	
•  If	S	is	the	start	symbol	of	grammar	G,	define		
L(G)	=	L(S)	
– Nonterminal	on	lef	of	first	rule	is	taken	to	be	the	
start	symbol	if	one	is	not	specified	explicitly	

UW CSE 401 Winter 2017 C-16

Reduced	Grammars	

•  Grammar	G		is	reduced		iff	for	every	
producOon	A	::=	α	in	G		there	is	a	derivaOon		
			S	=>*	x	A	z	=>	x	α	z	=>*	xyz		

–  i.e.,	no	producOon	is	useless	
•  ConvenOon:	we	will	use	only	reduced	
grammars	
– There	are	algorithms	for	pruning	useless	
producOons	from	grammars	–	see	a	formal	
language	or	compiler	book	for	details	

UW CSE 401 Winter 2017 C-17

Ambiguity	

•  Grammar	G		is	unambiguous	iff	every	w	in	L(G)	
has	a	unique	lefmost	(or	rightmost)	derivaOon	
–  Fact:	unique	lefmost	or	unique	rightmost	implies	the	
other	

•  A	grammar	without	this	property	is	ambiguous	
– Note	that	other	grammars	that	generate	the	same	
language	may	be	unambiguous	

•  We	need	unambiguous	grammars	for	parsing	

UW CSE 401 Winter 2017 C-18

Example:	Ambiguous	Grammar	for	
ArithmeOc	Expressions	

	expr	::=	expr	+	expr	|	expr	-	expr		
	 	|	expr	*	expr	|	expr	/	expr	|	int	
	int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

•  Exercise:	show	that	this	is	ambiguous	
– How?		Show	two	different	lefmost	or	rightmost	
derivaOons	for	the	same	string	

– Equivalently:	show	two	different	parse	trees	for	
the	same	string	

UW CSE 401 Winter 2017 C-19

Example	(cont)	

•  Give	a	lefmost	derivaOon	of	2+3*4	and	show	
the	parse	tree	

UW CSE 401 Winter 2017 C-20

	expr	::=	expr	+	expr	|	expr	-	expr		
	|	expr	*	expr	|	expr	/	expr	|	int	

	int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

Example	(cont)	

•  Give	a	different	lefmost	derivaOon	of	
2+3*4	and	show	the	parse	tree	

UW CSE 401 Winter 2017 C-21

	expr	::=	expr	+	expr	|	expr	-	expr		
	|	expr	*	expr	|	expr	/	expr	|	int	

	int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

Another	example	

•  Give	two	different	derivaOons	of	5+6+7	

UW CSE 401 Winter 2017 C-22

	expr	::=	expr	+	expr	|	expr	-	expr		
	|	expr	*	expr	|	expr	/	expr	|	int	

	int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

What’s	going	on	here?	

•  The	grammar	has	no	noOon	of	precedence	or	
associaOvely	

•  TradiOonal	soluOon	
–  Create	a	non-terminal	for	each	level	of	precedence	
–  Isolate	the	corresponding	part	of	the	grammar	
–  Force	the	parser	to	recognize	higher	precedence	
subexpressions	first	

– Use	lef-	or	right-recursion	for	lef-	or	right-associaOve	
operators	(non-associaOve	operators	are	not	
recursive)	

UW CSE 401 Winter 2017 C-23

Classic	Expression	Grammar	
(first	used	in	ALGOL	60)	
expr	::=	expr	+	term	|	expr	–	term	|	term	
term	::=	term	*	factor	|	term	/	factor	|	factor	
factor	::=	int	|	(expr)	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	

UW CSE 401 Winter 2017 C-24

Check:		
Derive	2	+	3	*	4	

UW CSE 401 Winter 2017 C-25

expr	::=	expr	+	term	|	expr	–	term	|	term	
term	::=	term	*	factor	|	term	/	factor	|	factor	
factor	::=	int	|	(expr)	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	

Check:		
Derive	5	+	6	+	7	

	
	
	
	

•  Note	interacOon	between	lef-	vs	right-recursive	rules	and	
resulOng	associaOvity	

UW CSE 401 Winter 2017 C-26

expr	::=	expr	+	term	|	expr	–	term	|	term	
term	::=	term	*	factor	|	term	/	factor	|	factor	
factor	::=	int	|	(expr)	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	

Check:		
Derive	5	+	(6	+	7)	

UW CSE 401 Winter 2017 C-27

expr	::=	expr	+	term	|	expr	–	term	|	term	
term	::=	term	*	factor	|	term	/	factor	|	factor	
factor	::=	int	|	(expr)	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	

Another	Classic	Example	

•  Grammar	for	condiOonal	statements	
stmt	::=	if	(cond)	stmt	
	 							|	if	(cond)	stmt		else	stmt	

– Exercise:	show	that	this	is	ambiguous	
•  How?	

UW CSE 401 Winter 2017 C-28

One	DerivaOon	

		
		

	
	
	
	
if		(cond)				if			(cond)				stmt					else				stmt	

UW CSE 401 Winter 2017 C-29

stmt ::= if (cond) stmt
 | if (cond) stmt else stmt

Another	DerivaOon	

		
		

	
	
	
	
if		(cond)				if			(cond)				stmt					else				stmt	

UW CSE 401 Winter 2017 C-30

stmt ::= if (cond) stmt
 | if (cond) stmt else stmt

Solving	“if”	Ambiguity	

•  Fix	the	grammar	to	separate	if	statements	
with	else	clause	and	if	statements	with	no	else	
– Done	in	Java	reference	grammar	
– Adds	lots	of	non-terminals	

•  or,	Change	the	language	
– But	it’d	beier	be	ok	to	do	this	

•  or,	Use	some	ad-hoc	rule	in	the	parser	
– “else	matches	closest	unpaired	if”	

UW CSE 401 Winter 2017 C-31

Resolving	Ambiguity	with	Grammar	(1)	

Stmt		::=	MatchedStmt	|	UnmatchedStmt		
MatchedStmt			::=	...	|		
	 	 	if	(Expr)	MatchedStmt	else	MatchedStmt		

UnmatchedStmt	::=	…	|	
	 	 	if	(Expr)	Stmt	|		
	 	 	if	(Expr)	MatchedStmt	else	UnmatchedStmt		

–  formal,	no	addiOonal	rules	beyond	syntax		
– can	be	more	obscure	than	original	grammar	

UW CSE 401 Winter 2017 C-32

Check	

		
		

	
	
	
	
if		(cond)				if			(cond)				stmt					else				stmt	

UW CSE 401 Winter 2017 C-33

	
Stmt			::=	MatchedStmt	|	UnmatchedStmt		
MatchedStmt			::=	...	|		

	 	if	(Expr)	MatchedStmt	else	MatchedStmt		
UnmatchedStmt	::=	if	(Expr)	Stmt	|		

	 	if	(Expr)	MatchedStmt	else	UnmatchedStmt		

Resolving	Ambiguity	with	Grammar	(2)	

•  If	you	can	(re-)design	the	language,	just	avoid	the	
problem	enOrely	

Stmt	::=	...	|		
	 	if	Expr	then	Stmt	end	|		
	 	if	Expr	then	Stmt	else	Stmt	end		

–  formal,	clear,	elegant		
–  allows	sequence	of	Stmts	in	then	and	else	branches,	no	
{	,	}	needed		

–  extra	end	required	for	every	if	
(But	maybe	this	is	a	good	idea	anyway?)	

UW CSE 401 Winter 2017 C-34

Parser	Tools	and	Operators	

•  Most	parser	tools	can	cope	with	ambiguous	
grammars	
– Makes	life	simpler	if	used	with	discipline	

•  Typically	one	can	specify	operator	precedence	&	
associaOvity	
– Allows	simpler,	ambiguous	grammar	with	fewer	
nonterminals	as	basis	for	generated	parser,	without	
creaOng	problems	

•  Take	advantage	of	this	to	simplify	the	grammar	
when	using	parser-generator	tools	

UW CSE 401 Winter 2017 C-35

Parser	Tools	and	Ambiguous	
Grammars	
•  Possible	rules	for	resolving	other	problems	

– Earlier	producOons	in	the	grammar	preferred	to	
later	ones	

– Longest	match	used	if	there	is	a	choice	

•  Parser	tools	normally	allow	for	this	
– But	be	sure	that	what	the	tool	does	is	really	what	
you	want	

•  And	that	it’s	part	of	the	tool	spec,	so	that	v2	won’t	do	
something	different	(that	you	don’t	want!)	

UW CSE 401 Winter 2017 C-36

Coming	AiracOons	

•  Next	topic:	LR	parsing	
– ConOnue	reading	ch.	3	

UW CSE 401 Winter 2017 C-37

