
CSE	401	–	Compilers	

Sta3c	Seman3cs	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 I-1

Administrivia	1/30/17	

•  Parser	+	AST	+	print	visitors	due	Thurs.,	11	pm	
– Usual	late	days	if	you	(and	your	partner)	need	and	
have	them	

– How’s	it	going?	
•  hw2	sample	solu3ons	out	end	of	class	today	
•  Short	hw3	on	LL	grammars	due	Sunday,	11	pm	

– No	late	assignments	accepted	so	we	can	get	
sample	solu3ons	out	in	3me	to	study	for	….	

UW CSE 401 Winter 2017 I-2

Midterm	exam	
•  Next	Wednesday	in	class	
•  Closed	book,	no	notes;	will	include	brief	
reference	info	on	exam	as	needed	

•  Contents:	up	to	basics	of	sta3c	seman3cs	(i.e.,	
review	this	week’s	lectures	and	know	general	
issues,	not	detailed	coding	that	is	the	next	part	of	
the	project)	

•  Old	exams	and	a	midterm	topic	list	on	the	web	
now	

•  Review	session	next	Tuesday,	4:30,	EEB	037	

UW CSE 401 Winter 2017 I-3

Agenda	

•  Sta3c	seman3cs	
•  Types	
•  A\ribute	grammars	
•  Represen3ng	types	
•  Symbol	tables	
•  Disclaimer:	There’s	(lots)	more	here	than	the	what	
you	need	for	the	project	

UW CSE 401 Winter 2017 I-4

What	do	we	need	to	know	to	compile	
&	check	this?	
class	C	{	
	int	a;	
	C(int	ini3al)	{	
	 	a	=	ini3al;	
	}	
	void	setA(int	val)	{	
	 	a	=	val;	
	}	

}	

UW CSE 401 Winter 2017 I-5

class	Main	{	
		public	sta3c	void	main(){	
	 	C	c	=	new	C(17);	
	 	c.setA(42);	

		}	
}	

Beyond	Syntax	

•  There	is	a	level	of	correctness	that	is	not	captured	by	a	
context-free	grammar	
–  Has	a	variable	been	declared?	
–  Are	types	consistent	in	an	expression?	
–  In	the	assignment	x=y;	is	y	assignable	to	x?	
–  Does	a	method	call	have	the	right	number	and	types	of	
parameters?	

–  In	a	selector	p.q,	is	q	a	method	or	field	of	class	instance	p?	
–  Is	variable	x	guaranteed	to	be	ini3alized	before	it	is	used?	
–  Could	p	be	null	when	p.q	is	executed?	
–  Etc.	etc.	etc.	

UW CSE 401 Winter 2017 I-6

What	else	do	we	need	to	know	to	
generate	code?	
•  Where	are	fields	allocated	in	an	object?	
•  How	big	are	objects?	(i.e.,	how	much	storage	
needs	to	be	allocated	by	new)	

•  Where	are	local	variables	stored	when	a	
method	is	called?	

•  Which	methods	are	associated	with	an	object/
class?	
–  In	par3cular,	how	do	we	figure	out	which	method	
to	call	based	on	the	run-3me	type	of	an	object?	

UW CSE 401 Winter 2017 I-7

Seman3c	Analysis	
•  Main	tasks:	

–  Extract	types	and	other	informa3on	from	the	program	
–  Check	language	rules	that	go	beyond	the	context-free	
grammar	

–  Resolve	names	
•  Relate	declara3ons	and	uses	of	each	variable	

–  “Understand”	the	program	well	enough	for	synthesis	
•  Key	data	structure:	Symbol	tables	

– Map	each	iden3fier	in	the	program	to	informa3on	about	it	
(kind,	type,	etc.)	

•  This	is	the	final	part	of	the	analysis	phase	(front	end)	of	
the	compiler	

UW CSE 401 Winter 2017 I-8

Some	Kinds	of	Seman3c	Informa3on	

Information Generated From Used to process

Symbol tables Declarations Expressions,
statements

Type information Declarations,
expressions

Operations

Constant/variable
information

Declarations,
expressions

Statements,
expressions

Register & memory
locations

Assigned by compiler Code generation

Values Constants Expressions

UW CSE 401 Winter 2017 I-9

Seman3c	Checks	

•  For	each	language	construct	we	want	to	
know:	
– What	seman3c	rules	should	be	checked	

•  Specified	by	language	defini3on	(type	compa3bility,	
required	ini3aliza3on,	etc.)	

– For	an	expression,	what	is	its	type	(used	to	check	
whether	the	expression	is	legal	in	the	current	
context)	

– For	declara3ons,	what	informa3on	needs	to	be	
captured	to	use	elsewhere	

UW CSE 401 Winter 2017 I-10

A	Sampling	of	Seman3c	Checks	(0)	

•  Appearance	of	a	name:	id	
– Check:	id	has	been	declared	and	is	in	scope	
– Compute:	Inferred	type	of	id	is	its	declared	type	

•  Constant:	v	
– Compute:	Inferred	type	and	value	are	explicit	

UW CSE 401 Winter 2017 I-11

A	Sampling	of	Seman3c	Checks	(1)	

•  Binary	operator:	exp1	op	exp2		
– Check:	exp1	and	exp2	have	compa3ble	types	

•  Either	iden3cal,	or	
• Well-defined	conversion	to	appropriate	types	

– Compute:	Inferred	type	is	a	func3on	of	the	
operator	and	operand	types		

UW CSE 401 Winter 2017 I-12

A	Sampling	of	Seman3c	Checks	(2)	

•  Assignment:	exp1	=	exp2		
–  Check:	exp1	is	assignable	(not	a	constant	or	expression)	
–  Check:	exp1	and	exp2	have	(assignment-)compa3ble	types	

•  Iden3cal,	or	
•  exp2	can	be	converted	to	exp1	(e.g.,	char	to	int),	or	
•  Type	of	exp2	is	a	subclass	of	type	of	exp1		(can	be	decided	at	
compile	3me)	

–  Compute:	Inferred	type	is	type	of	exp1		

UW CSE 401 Winter 2017 I-13

A	Sampling	of	Seman3c	Checks	(3)	

•  Cast:	(exp1)	exp2		
– Check:	exp1	is	a	type		
– Check:	exp2	either	

•  Has	same	type	as	exp1	
•  Can	be	converted	to	type	exp1	(e.g.,	double	to	int)	
•  Downcast:	is	a	superclass	of	exp1	(in	general	this	
requires	a	run3me	check	to	verify;	at	compile	3me	we	
can	at	least	decide	if	it	could	be	true)	

•  Upcast	(Trivial):	is	the	same	or	a	subclass	of	exp1	
– Compute:	Inferred	type	is	exp1	

UW CSE 401 Winter 2017 I-14

A	Sampling	of	Seman3c	Checks	(4)	

•  Field	reference:		exp.f		
– Check:	exp	is	a	reference	type	(class	instance)	
– Check:	The	class	of	exp	has	a	field	named	f		
– Compute:	Inferred	type	is	declared	type	of	f	

UW CSE 401 Winter 2017 I-15

A	Sampling	of	Seman3c	Checks	(5)	
•  Method	call:	exp.m(e1,	e2,	…,	en)	

–  Check:	exp	is	a	reference	type	(class	instance)	
–  Check:	The	class	of	exp	has	a	method	named	m	
–  Check:	The	method	exp.m	has	n	parameters	

•  Or,	if	overloading	allowed,	at	least	one	version	of	m	exists	with	n	
parameters	

–  Check:	Each	argument	has	a	type	that	can	be	assigned	to	
the	associated	parameter	

•  Same	“assignment	compa3ble”	check	for	assignment	
•  Overloading:	need	to	find	a	“best	match”	among	available	
methods	if	more	than	one	is	compa3ble	–	or	reject	if	result	is	
ambiguous	(e.g.,	C++,	others)	

–  Compute:	Inferred	type	is	given	by	method	declara3on	(or	
could	be	void)	

UW CSE 401 Winter 2017 I-16

A	Sampling	of	Seman3c	Checks	(6)	

•  Return	statement:	return	exp;		or:		return;	
•  Check:	

–  If	the	method	is	not	void:	The	expression	can	be	
assigned	to	a	variable	with	the	declared	return	
type	of	the	method	–	exactly	the	same	test	as	for	
assignment	statement	

–  If	the	method	is	void:	There	is	no	expression	

UW CSE 401 Winter 2017 I-17

A\ribute	Grammars	

•  A	systema3c	way	to	think	about	seman3c	
analysis	

•  Formalize	proper3es	checked	and	computed	
during	seman3c	analysis	and	relate	them	to	
grammar	produc3ons	in	the	CFG	(or	AST)	

•  Some3mes	used	directly,	but	even	when	not,	
AGs	are	a	useful	way	to	organize	the	analysis	
and	think	about	it	

UW CSE 401 Winter 2017 I-18

A\ribute	Grammars	

•  Idea:	associate	a\ributes	with	each	node	in	the	
(abstract)	syntax	tree	

•  Examples	of	a\ributes	
–  Type	informa3on	
–  Storage	loca3on	
– Assignable	(e.g.,	expression	vs	variable	–	lvalue	vs	
rvalue	in	C/C++	terms)	

–  Value	(for	constant	expressions)	
–  etc.	…	

•  Nota3on:	X.a	if	a	is	an	a\ribute	of	node	X	
UW CSE 401 Winter 2017 I-19

A\ribute	Example	

•  Assume	that	each	node	has	a	.val	a\ribute	giving	the	
computed	value	of	that	node		

•  AST	and	a\ribu3on	for	(1+2)	*	(6	/	2)	

UW CSE 401 Winter 2017 I-20

Inherited	and	Synthesized	A\ributes	

Given	a	produc3on	X	::=	Y1	Y2		…	Yn	
•  A	synthesized	a\ribute	X.a	is	a	func3on	of	
some	combina3on	of	the	a\ributes	of	the	Yi’s	
(bo\om	up)	

•  An	inherited	a\ribute	Yi.b	is	a	func3on	of	
some	combina3on	of	a\ributes	X.a	and	other	
Yj.c	(top	down)	
– Oren	restricted	a	bit:	example:	only	Y’s	to	the	ler	
can	be	used	(has	implica3ons	for	evalua3on)	

UW CSE 401 Winter 2017 I-21

A\ribute	Equa3ons	

•  For	each	kind	of	node	we	give	a	set	of	
equa3ons	(not	assignments)	rela3ng	a\ribute	
values	of	the	node	and	its	children	
– Example:	plus.val	=	exp1.val	+	exp2.val	

•  A\ribu3on	(evalua3on)	means	implicitly	
finding	a	solu3on	that	sa3sfies	all	of	the	
equa3ons	in	the	tree	
– This	is	an	example	of	a	constraint	language	

UW CSE 401 Winter 2017 I-22

Informal	Example	of	A\ribute	Rules	(1)	

•  Suppose	we	have	the	following	grammar	for	a	
trivial	language	
	program	::=	decl	stmt	
	decl	::=	int	id;	
	stmt	::=	exp	=	exp	;	
	exp	::=	id	|	exp	+	exp	|	1	

•  We	want	to	give	suitable	a\ributes	for	basic	
type	and	lvalue/rvalue	checking	

UW CSE 401 Winter 2017 I-23

Informal	Example	of	A\ribute	Rules	(2)	

•  A\ributes	of	nodes	
– env	(environment,	e.g.,	symbol	table);	synthesized	
by	decl,	inherited	by	stmt	

•  Each	entry	maps	a	name	to	its	type	and	kind	

–  type	(expression	type);	synthesized	
– kind	(variable	[var	or	lvalue]	vs	value	[val	or	
rvalue]);	synthesized	

UW CSE 401 Winter 2017 I-24

A\ributes	for	Declara3ons	

decl	::=	int	id;	
decl.env	=	{id	⟶	(int,	var)}	

UW CSE 401 Winter 2017 I-25

A\ributes	for	Program	

program	::=	decl	stmt	
stmt.env	=	decl.env	

UW CSE 401 Winter 2017 I-26

A\ributes	for	Constants	

exp	::=	1	
exp.kind	=	val	
exp.type	=	int	
	

UW CSE 401 Winter 2017 I-27

A\ributes	for	Iden3fier	Exprs.	

exp	::=	id	
(type,	kind)	=	exp.env.lookup(id)	
exp.type	=	type			(i.e.,	id	type)	
exp.kind	=	kind				(i.e.,	id	kind)	

UW CSE 401 Winter 2017 I-28

A\ributes	for	Addi3on	

exp	::=	exp1	+	exp2	
exp1.env	=	exp.env	
exp2.env	=	exp.env	
error	if	exp1.type	!=	exp2.type	

(or	error	if	not	compa3ble,	depending	on	language	rules)	

exp.type	=	exp1.type		(or	exp2.type)	
(or	whatever	type	language	rules	specify)	

exp.kind	=	val	

UW CSE 401 Winter 2017 I-29

A\ribute	Rules	for	Assignment	

stmt	::=	exp1	=	exp2;	
exp1.env	=	stmt.env	
exp2.env	=	stmt.env	
Error	if	exp2.type	is	not	assignment	compa3ble	with	
exp1.type	
Error	if	exp1.kind	is	not	var	(can’t	be	val)	

UW CSE 401 Winter 2017 I-30

Example	

int	x;	x	=	x	+	1;	

UW CSE 401 Winter 2017 I-31

Extensions	

•  This	can	be	extended	to	handle	sequences	of	
declara3ons	and	statements	
– Sequences	of	declara3ons	create	larger	
environments,	where	each	one	copies	the	
previous	one	and	adds	the	new	id	binding	

– Full	environment	is	passed	down	to	statements	
and	expressions	

UW CSE 401 Winter 2017 I-32

Observa3ons	

•  These	are	equa3onal	(func3onal,	e.g.,	no	side	
effects)	computa3ons		

•  Solver	can	be	automated,	provided	the	
a\ribute	equa3ons	are	non-circular	

•  But	implementa3on	problems	
– Non-local	computa3on	
– Can’t	afford	to	literally	pass	around	copies	of	
large,	aggregate	structures	like	environments	

UW CSE 401 Winter 2017 I-33

In	Prac3ce	

•  A\ribute	grammars	give	us	a	good	way	of	
thinking	about	how	to	structure	seman3c	checks	

•  Symbol	tables	will	hold	environment	informa3on	
•  Add	fields	to	AST	nodes	to	refer	to	appropriate	
a\ributes	(symbol	table	entries	for	iden3fiers,	
types	for	expressions,	etc.)	
–  Put	in	appropriate	places	in	AST	class	inheritance	tree	
and	exploit	inheritance.		Most	statements	don’t	need	
types,	for	example,	but	all	expressions	do.	

UW CSE 401 Winter 2017 I-34

Symbol	Tables	
•  Map	iden3fiers	to		
<type,	kind,	loca3on,	other	proper3es>	

•  Opera3ons	
–  Lookup(id)	=>	informa3on	
–  Enter(id,	informa3on)	
– Open/close	scopes	

•  Build	&	use	during	seman3cs	pass	
–  Build	first	from	declara3ons	
–  Then	use	to	check	seman3c	rules	

•  Use	(and	augment)	in	later	compiler	phases	

UW CSE 401 Winter 2017 I-35

Aside:	Implemen3ng	Symbol	Tables	

•  Big	topic	in	classical	(i.e.,	ancient)	compiler	
courses:	implemen3ng	a	hashed	symbol	table	

•  These	days:	use	the	collec3on	classes	that	are	
provided	with	the	standard	language	libraries	
(Java,	C#,	C++,	ML,	Haskell,	etc.)	
–  Then	tune	&	op3mize	if	it	really	ma\ers	

•  In	produc3on	compilers,	it	really	ma\ers	
–  Up	to	a	point…	

•  Java:	
– Map	(HashMap)	will	handle	most	cases	
–  List	(ArrayList)	for	ordered	lists	(parameters,	etc.)	

UW CSE 401 Winter 2017 I-36

Symbol	Tables	for	MiniJava	(1)	

•  We’ll	outline	a	scheme	that	does	what	we	
need,	but	feel	free	to	modify/adapt	as	needed	

•  Mix	of	global	and	local	tables	
•  Global	–	Per	Program	Informa3on	

– Single	global	table	to	map	class	names	to	per-class	
symbol	tables	

•  Created	in	a	pass	over	class	defini3ons	in	AST	
•  Used	in	remaining	parts	of	compiler	to	check	class	
types	and	their	field/method	names	and	extract	
informa3on	about	them	

UW CSE 401 Winter 2017 I-37

Symbol	Tables	for	MiniJava	(2)	

•  Global	–	Per	Class	Informa3on	
– Basic	idea:	one	symbol	table	for	each	class	

•  One	entry	per	method/field	declared	in	the	class	
–  Contents:	type	informa3on,	public/private,	parameter	types	
(for	methods),	storage	loca3ons	(later),	etc.	

– But	in	full	Java,	need	mul3ple	symbol	tables	(or	
more	complex	symbol	table)	per	class	

•  Ex.:	Java	allows	the	same	iden3fier	to	name	both	a	
method	and	a	field	in	a	class,	so	there	are	mul3ple	
namespaces	for	a	single	class	

UW CSE 401 Winter 2017 I-38

Symbol	Tables	for	MiniJava	(3)	

•  Global	(cont)	
– All	global	tables	persist	throughout	the	
compila3on	

•  And	beyond	in	a	real	compiler…	
–  Symbolic	informa3on	in	Java	.class	or	MSIL	files,	link-3me	
op3miza3on	informa3on	in	gcc)	

–  Debug	informa3on	in	.o	and	.exe	files	
–  Some	or	all	informa3on	in	library	files	(.a,	.so)	
–  Type	informa3on	for	garbage	collector	

UW CSE 401 Winter 2017 I-39

Symbol	Tables	for	MiniJava	(4)	

•  One	local	symbol	table	for	each	method	
– One	entry	for	each	local	variable	or	parameter	

•  Contents:	type	informa3on,	storage	loca3ons	(later),	etc.	

– Needed	only	while	compiling	the	method;	can	discard	
when	done	in	a	single	pass	compiler	

•  But	if	type	checking	and	code	gen,	etc.	are	done	in	separate	
passes,	this	table	needs	to	persist	un3l	we’re	done	with	it	

–  And	beyond:	may	need	type	info	for	run3me	debugging,	memory	
management,	etc.	

•  For	us,	MiniJava	compiler	will	likely	be	mul3ple	passes	

UW CSE 401 Winter 2017 I-40

Beyond	MiniJava	
•  What	we	aren’t	dealing	with:	nested	scopes	

–  Inner	classes	
– Nested	scopes	in	methods	–	reuse	of	iden3fiers	in	
parallel	or	inner	scopes;	nested	func3ons	(ML,	…)	

–  Lambdas	and	func3on	closures	
•  Basic	idea:	new	symbol	table	for	inner	scopes,	
linked	to	surrounding	scope’s	table	(i.e.,	stack	of	
symbol	tables,	top	=	current	innermost	scope)	
–  Look	for	iden3fier	in	inner	scope;	if	not	found	look	in	
surrounding	scope	(recursively)	

–  Pop	symbol	table	when	we	exit	a	scope	

UW CSE 401 Winter 2017 I-41

Engineering	Issues	(1)	

•  In	mul3pass	compilers,	inner	scope	symbol	
table	needs	to	persist	to	use	in	later	passes	
– So	we	really	can’t	delete	symbol	tables	on	scope	
exit	

– Retain	and	add	a	pointer	to	the	parent	scope	
(effec3vely	a	reverse	tree	of	symbol	tables	with	
root	=	global	table)	

•  Keep	a	pointer	to	current	innermost	scope	(leaf)	and	
start	looking	for	symbols	there	

UW CSE 401 Winter 2017 I-42

Engineering	Issues	(2)	

•  In	prac3ce,	oren	want	to	retain	O(1)	lookup	
or	something	close	to	it	
– Would	like	to	avoid	O(depth	of	scope	nes3ng),	
although	some	compilers	assume	this	will	be	small	
enough	not	to	ma\er	

–  If	we	care,	use	hash	tables	with	addi3onal	
informa3on	(linked	lists	of	various	sorts)	to	get	
the	scope	nes3ng	right	

UW CSE 401 Winter 2017 I-43

Error	Recovery	

•  What	to	do	when	an	undeclared	iden3fier	is	
encountered?	
– Only	complain	once	(Why?)	
– Can	forge	a	symbol	table	entry	for	it	once	you’ve	
complained	so	it	will	be	found	in	the	future	

– Assign	the	forged	entry	a	type	of	“unknown”	
– “Unknown”	is	the	type	of	all	malformed	
expressions	and	is	compa3ble	with	all	other	types	

•  Allows	you	to	only	complain	once!		(How?)	

UW CSE 401 Winter 2017 I-44

“Predefined”	Things	
•  Many	languages	have	some	“predefined”	items	
(constants,	func3ons,	classes,	namespaces,	
standard	libraries,	…)	

•  Include	ini3aliza3on	code	or	declara3ons	to	
manually	create	symbol	table	entries	for	these	
when	the	compiler	starts	up	
–  Rest	of	compiler	generally	doesn’t	need	to	know	the	
difference	between	“predeclared”	items	and	ones	
found	in	the	program	

–  Possible	to	put	“standard	prelude”	informa3on	in	a	
file	or	data	resource	and	use	that	to	ini3alize	

•  Tradeoffs?	

UW CSE 401 Winter 2017 I-45

Types	

•  Classical	roles	of	types	in	programming	languages	
–  Run-3me	safety	
–  Compile-3me	error	detec3on	
–  Improved	expressiveness	(method	or	operator	
overloading,	for	example)	

–  Provide	informa3on	to	op3mizer	
•  In	strongly	typed	languages,	allows	compiler	to	make	
assump3ons	about	possible	values	

•  Qualifiers	like	const	and	restrict	in	C	allow	for	other	
assump3ons	

UW CSE 401 Winter 2017 I-46

Type	Checking	Terminology	
Sta3c	vs.	dynamic	typing		

–  sta3c:	checking	done	prior	to	execu3on	(e.g.	compile-3me)		
–  dynamic:	checking	during	execu3on		

Strong	vs.	weak	typing		
–  strong:	guarantees	no	illegal	opera3ons	performed		
–  weak:	can’t	make	guarantees	

Caveats:	
•  Hybrids	common	
•  Inconsistent	usage		

	common	
•  “untyped,”	“typeless”		

	could	mean	dynamic		
	or	weak	

UW CSE 401 Winter 2017 47

static dynamic

strong Java, SML Scheme, Ruby

weak C PERL

Type	Systems	

•  Base	Types	
– Fundamental,	atomic	types	
– Typical	examples:	int,	double,	char,	bool	

•  Compound/Constructed	Types	
– Built	up	from	other	types	(recursively)	
– Constructors	include	records/structs/classes,	
arrays,	pointers,	enumera3ons,	func3ons,	
modules,	…	

•  Most	language	provide	a	small	collec3on	of	these	

UW CSE 401 Winter 2017 I-48

Type	Representa3on	

•  One	way	to	represent	types	at	compile-3me	
•  Create	a	shallow	class	hierarchy	

– Example:	
	abstract	class	Type	{	…	}			//	or	interface	
	class	ClassType	extends	Type	{	…	}	
	class	BaseType	extends	Type	{	…	}	

– Should	not	need	too	many	of	these	

UW CSE 401 Winter 2017 I-49

Types	vs	ASTs	

•  Types	nodes	are	not	AST	nodes!	
•  AST	=	abstract	representa3on	of	source	program	
(including	source	program	type	info)	

•  Types	=	abstract	representa3on	of	type	
seman3cs	for	type	checking,	inference,	etc.	
–  Can	include	informa3on	not	explicitly	represented	in	
the	source	code,	or	may	describe	types	in	ways	more	
convenient	for	processing	

•  Be	sure	you	have	a	separate	“type”	class	
hierarchy	in	your	compiler	dis3nct	from	the	AST	

UW CSE 401 Winter 2017 I-50

Base	Types	
•  For	each	base	type	(int,	boolean,	char,	double,	etc.)	
create	a	single	object	to	represent	it	(singleton!)	
–  Base	types	in	symbol	table	entries	and	AST	nodes	are	
direct	references	to	these	objects	

–  Base	type	objects	usually	created	at	compiler	startup	
•  Useful	to	create	a	type	“void”	object	for	the	result	
“type”	of	func3ons	that	do	not	return	a	value	

•  Also	useful	to	create	a	type	“unknown”	object	for	
errors	
–  (“void”	and	“unknown”	types	reduce	the	need	for	special	
case	code	in	various	places	in	the	type	checker;	don’t	have	
to	return	“null”	for	“no	type”	or	“not	declared”	cases)	

UW CSE 401 Winter 2017 I-51

Compound	Types	

•  Basic	idea:	use	a	appropriate	“compound	
type”	or	“type	constructor”	object	that	
references	the	component	types	
– Limited	number	of	these	–	correspond	directly	to	
type	constructors	in	the	language	(pointer,	array,	
record/struct/class,	func3on,…)	

– A	compound	type	is	a	graph	

•  Some	examples…	

UW CSE 401 Winter 2017 I-52

Class	Types	
•  Type	for:	class	Id	{	fields	and	methods	}	

class	ClassType	extends	Type	{	
	Type	baseClassType;				 	//	ref	to	base	class	
	Map	fields; 	 				 	 	//	type	info	for	fields	
	Map	methods; 	 				 	//	type	info	for	methods	

}	

(Note:	may	not	want	to	do	this	literally,	depending	on	
how	class	symbol	tables	are	represented;	e.g.,	each	
class	symbol	table	might	be	useful	or	sufficient	as	the	
representa3on	of	that	class	type.)	

UW CSE 401 Winter 2017 I-53

Array	Types	

•  For	regular	Java	this	is	simple:	only	possibility	
is	#	of	dimensions	and	element	type	(which	
can	be	another	array	type	or	anything	else)	

	class	ArrayType	extends	Type	{	
	 	int	nDims;	
	 	Type	elementType;	
	}	

UW CSE 401 Winter 2017 I-54

Array	Types	for	Other	Languages	
•  Example:	Pascal	allowed	arrays	to	be	indexed	by	
any	discrete	type	like	an	enum,	char,	subrange	of	
int,	or	other	discrete	type	

	array	[indexType]	of	elementType	
(fantas3c	idea	–	would	be	nice	if	it	became	popular	again)	

•  Element	type	can	be	any	other	type,	including	an	
array	(e.g.,	2-D	array	=	1-D	array	of	1-D	array)	

	class	GeneralArrayType	extends	Type	{	
	 	Type	indexType;	
	 	Type	elementType;	
	}	

UW CSE 401 Winter 2017 I-55

Methods/Func3ons	

•  Type	of	a	method	is	its	result	type	plus	an	
ordered	list	of	parameter	types	

	class	MethodType	extends	Type	{	
	 	Type	resultType; 						//	type	or	“void”	
	 	List	parameterTypes;	
	}	

UW CSE 401 Winter 2017 I-56

Type	Equivalance	

•  For	base	types	this	is	simple:	types	are	the	
same	if	they	are	iden3cal	

•  Can	use	pointer	comparison	in	the	type	checker	if	you	
have	a	singleton	object	for	each	base	type	

– Normally	there	are	well	defined	rules	for	
coercions	between	arithme3c	types	

•  Compiler	inserts	these	automa3cally	where	required	by	
the	language	spec	or	when	wri\en	explicitly	by	
programmer	(casts)	–	oren	involves	inser3ng	cast	or	
conversion	nodes	in	AST	

UW CSE 401 Winter 2017 I-57

Type	Equivalence	for	Compound	Types	

•  Two	basic	strategies	
– Structural	equivalence:	two	types	are	the	same	if	
they	are	the	same	kind	of	type	and	their	
component	types	are	equivalent,	recursively	

– Name	equivalence:	two	types	are	the	same	only	if	
they	have	the	same	name,	even	if	their	structures	
match	

•  Different	language	design	philosophies	

UW CSE 401 Winter 2017 I-58

Structural	Equivalence	

•  Structural	equivalence	says	two	types	are	equal	
iff	they	have	same	structure		
– Atomic	types	are	tautologically	the	same	structure	
and	equal	if	they	are	the	same	type	

–  For	type	constructors:	equal	if	the	same	constructor		
and,	recursively,	type	(constructor)	components	are	
equal	

•  Ex:	atomic	types,	array	types,	ML	record	types	
•  Implement	with	recursive	implementa3on	of	
equals,	or	by	canonicaliza3on	of	types	when	
types	created,	then	use	pointer/ref.	equality		

UW CSE 401 Winter 2017 59

Name	Equivalence	

•  Name	equivalence	says	that	two	types	are	
equal	iff	they	came	from	the	same	textual	
occurrence	of	a	type	constructor		
– Ex:	class	types,	C	struct	types	(struct	tag	name),	
datatypes	in	ML	

– special	case:	type	synonyms	(e.g.	typedef	in	C)	do	
not	define	new	types		

•  Implement	with	pointer	equality	assuming	
appropriate	representa3on	of	type	info	

UW CSE 401 Winter 2017 60

Type	Equivalence	and	Inheritance		
•  Suppose	we	have	

	class	Base	{	…	}	
	class	Extended	extends	Base	{	…	}	

•  A	variable	declared	with	type	Base	has	a	compile-8me	
type	or	sta8c	type	of	Base	

•  During	execu3on,	that	variable	may	refer	to	an	object	
of	class	Base	or	any	of	its	subclasses	like	Extended	(or	
can	be	null),	oren	called	the	the	run8me	type	or	
dynamic	type	
–  Since	subclass	is	guaranteed	to	have	all	fields/methods	of	
base	class,	type	checker	only	needs	to	deal	with	declared	
(compile-3me)	types	of	variables	and,	in	fact,	can’t	track	
all	possible	run3me	types	

UW CSE 401 Winter 2017 I-61

Type	Casts	

•  In	most	languages,	one	can	explicitly	cast	an	
object	of	one	type	to	another		
– some3mes	cast	means	a	conversion	(e.g.,	casts	
between	numeric	types)		

– some3mes	cast	means	a	change	of	sta3c	type	
without	doing	any	computa3on	(casts	between	
pointer	types	or	pointer	and	numeric	types)		

–  for	objects,	can	be	a	upcast	(free	and	always	safe)	
or	downcast	(requires	run3me	check	to	be	safe)	

UW CSE 401 Winter 2017 62

Type	Conversions	and	Coercions	

•  In	full	Java,	we	can	explicitly	convert	an	value	
of	type	double	to	one	of	type	int		
– can	represent	as	unary	operator		
–  typecheck,	codegen	normally		

•  In	full	Java,	can	implicitly	coerce	an	value	of	
type	int	to	one	of	type	double		
– compiler	must	insert	unary	conversion	operators,	
based	on	result	of	type	checking	

UW CSE 401 Winter 2017 63

C	and	Java:	type	casts	

•  In	C/C++:	safety/correctness	of	casts	not	checked		
–  allows	wri3ng	low-level	code	that’s	type-unsafe		
–  C++	has	more	elaborate	casts,	and	at	least	one	of	
them	does	imply	run3me	checks	

•  In	Java:	downcasts	from	superclass	to	subclass	
need	run3me	check	to	preserve	type	safety		

•  sta3c	typechecker	allows	the	cast		
•  typechecker/codegen	introduces	run3me	check	

–  (same	code	needed	to	handle	“instanceof”)		

•  Java’s	main	need	for	dynamic	type	checking	

UW CSE 401 Winter 2017 64

Various	No3ons	of	Type	Compa3bility	

•  There	are	usually	several	rela3ons	on	types	
that	we	need	to	analyze	in	a	compiler:	
– “is	the	same	as”	
– “is	assignable	to”	
– “is	same	or	a	subclass	of”	
– “is	conver3ble	to”	

•  Exact	meanings	and	checks	needed	depend	on	
the	language	spec.	

•  Be	sure	to	check	for	the	right	one(s)	

UW CSE 401 Winter 2017 I-65

Useful	Compiler	Func3ons	
•  Create	a	handful	of	methods	to	decide	different	
kinds	of	type	compa3bility:	
–  Types	are	iden3cal	
–  Type	t1	is	assignment	compa3ble	with	t2	
–  Parameter	list	is	compa3ble	with	types	of	expressions	
in	the	method	call	

•  Usual	modularity	reasons:	isolates	these	
decisions	in	one	place	and	hides	the	actual	type	
representa3on	from	the	rest	of	the	compiler	

•  Probably	belongs	in	the	same	package	with	the	
type	representa3on	classes	

UW CSE 401 Winter 2017 I-66

Implemen3ng	Type	Checking	for	MiniJava	

•  Create	mul3ple	visitors	for	the	AST	
•  First	pass/passes:	gather	informa3on	

– Collect	global	type	informa3on	for	classes	
– Could	do	this	in	one	pass,	or	might	want	to	do	one	
pass	to	collect	class	informa3on,	then	a	second	
one	to	collect	per-class	informa3on	about	fields,	
methods	–	you	decide	

•  Next	set	of	passes:	go	through	method	bodies	
to	check	types,	other	seman3c	constraints	

UW CSE 401 Winter 2017 I-67

Disclaimer	

•  This	overview	of	seman3cs,	type	
representa3on,	etc.	should	give	you	a	decent	
idea	of	what	needs	to	be	done	in	you’re	
project,	but	you’ll	need	to	adapt	the	ideas	to	
the	project	specifics.	

•  You’ll	also	find	good	ideas	in	your	compiler	
book…	

UW CSE 401 Winter 2017 I-68

Coming	A\rac3ons	

•  Need	to	start	thinking	about	transla3ng	to	target	
code	(x86-64	assembly	language	for	our	project)	

•  Next	lectures		
–  X86-64	overview	(as	a	target	for	simple	compilers)	
–  Run3me	representa3on	of	classes,	objects,	data,	and	
method	stack	frames	

– Assembly	language	code	for	higher-level	language	
statements,	method	calls,	dynamic	dispatch,	…	

•  And	there’s	a	midterm	in	there	somewhere…	

UW CSE 401 Winter 2017 I-69

