
CSE	401	–	Compilers	

Code	Shape	I	–	Basic	Constructs	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 K-1

Administrivia	

•  SemanBcs/type	check	due	Thur.	night	
– How’s	it	going?	
–  Reminder:	if	you	want	to	use	late	days,	both	partners	
need	to	have	them	available	and	both	are	charged	if	
used	

•  Codegen	part	of	the	project	out	shortly	
– High-level	overview	in	next	few	lectures	
–  Project-specific	view	in	secBons	this	week	

•  Midterm	exams:	Hand	back	at	end	of	hour.		
Scores	and	sample	soluBons	posted	yesterday.	

UW CSE 401 Winter 2017 K-2

Agenda	

•  Mapping	source	code	to	x86-64	
– Mapping	for	other	common	architectures	is	similar	

•  This	lecture:	basic	statements	and	expressions	
– We’ll	go	quickly	since	this	is	review	for	many,	fast	
orientaBon	for	others,	and	preXy	straighYorward	

•  Next:	Object	representaBon,	method	calls,	and	
dynamic	dispatch	

Footnote:	These	slides	include	more	than	is	specifically	
needed	for	the	course	project	

UW CSE 401 Winter 2017 K-3

Review:	Variables	

•  For	us,	all	data	will	be	either:	
–  In	a	stack	frame	(method	local	variables)	
–  In	an	object	(instance	variables)	

•  Local	variables	accessed	via	%rbp	
	 	movq		-16(%rbp),%rax	

•  Object	instance	variables	accessed	via	an	
offset	from	an	object	address	in	a	register	
– Details	later	

UW CSE 401 Winter 2017 K-4

ConvenBons	for	Examples	
•  Examples	show	code	snippets	in	isolaBon	
– Much	the	way	we’ll	generate	code	for	different	parts	
of	the	AST	in	a	compiler	visitor	pass	

– A	different	perspecBve	from	the	351	holisBc	view	
•  Register	%rax	used	here	as	a	generic	example	
–  Rename	as	needed	for	more	complex	code	using	
mulBple	registers	

•  64-bit	data	used	everywhere	
•  A	few	peephole	opBmizaBons	shown	for	a	flavor	
of	what’s	possible	
–  Some	might	be	easy	to	do	in	the	compiler	project	

UW CSE 401 Winter 2017 K-5

What	we’re	skipping	for	now	

•  Real	code	generator	needs	to	deal	with	many	
things	like:		
– Which	registers	are	busy	at	which	point	in	the	
program	

– Which	registers	to	spill	into	memory	when	a	new	
register	is	needed	and	no	free	ones	are	available	

– Dealing	with	different	sizes	of	data	
– ExploiBng	the	full	instrucBon	set	

UW CSE 401 Winter 2017 K-6

Code	GeneraBon	for	Constants	

•  Source	
	17	

•  x86-64	
	movq	 	$17,%rax	
–  Idea:	realize	constant	value	in	a	register	

•  OpBmizaBon:	if	constant	is	0	
	xorq	 	%rax,%rax	

(but	some	processors	do	beXer	with	movq	$0,%rax	–	and	
this	has	changed	over	Bme,	too)	

UW CSE 401 Winter 2017 K-7

Assignment	Statement	

•  Source	
	var	=	exp;	

•  x86-64	
	<code	to	evaluate	exp	into,	say,	%rax>	
	movq	 	%rax,offsetvar(%rbp)	
	
	

UW CSE 401 Winter 2017 K-8

Unary	Minus	

•  Source	
	-exp	

•  x86-64	
	<code	evaluaBng	exp	into	%rax>	
	negq	 	%rax	

•  OpBmizaBon	
– Collapse	-(-exp)	to	exp	

•  Unary	plus	is	a	no-op	

UW CSE 401 Winter 2017 K-9

Binary	+	

•  Source	
	exp1	+	exp2	

•  x86-64	
	<code	evaluaBng	exp1	into	%rax>	
	<code	evaluaBng	exp2	into	%rdx>	
	addq	 	%rdx,%rax	

UW CSE 401 Winter 2017 K-10

Binary	+	
•  Some	opBmizaBons	
–  If	exp2	is	a	simple	variable	or	constant,	don’t	need	
to	load	it	into	another	register	first.		Instead:	
	addq		exp2,%rax	

– Change	exp1	+	(-exp2)	into	exp1-exp2	
–  If	exp2	is	1	

	incq		 	%rax	
•  Somewhat	surprising:	whether	this	is	beXer	than		
addq	$1,%rax	depends	on	processor	implementaBon	
and	has	changed	over	Bme		

UW CSE 401 Winter 2017 K-11

Binary	-,	*	

•  Same	as	+	
–  Use	subq	for	–			(but	not	commutaBve!)	
–  Use	imulq	for	*	

•  Some	opBmizaBons	
–  Use	ler	shir	to	mulBply	by	powers	of	2	
–  If	your	mulBplier	is	slow	or	you’ve	got	free	scalar	units	and	
mulBplier	is	busy,	you	can	do	10*x	=	(8*x)+(2*x)	

–  Use	x+x	instead	of	2*x,	etc.	(oren	faster)	
–  Can	use		leaq	(%rax,%rax,4),%rax		to	compute	5*x,	then		
addq	%rax,%rax		to	get	10*x,	etc.	etc.	

–  Use	decq	for	x-1	(but	check:	subq	$-1	might	be	faster)	

UW CSE 401 Winter 2017 K-12

Signed	Integer	Division	
•  Ghastly	on	x86-64	

–  Only	works	on	128-bit	int	divided	by	64-bit	int	
•  (similar	instrucBons	for	64-bit	divided	by	32-bit	in	32-bit	x86)	

–  Requires	use	of	specific	registers	
•  Source	

	exp1	/	exp2	
•  x86-64	

	<code	evaluaBng	exp1	into	%rax	ONLY>	
	<code	evaluaBng	exp2	into	%rbx>	
	cqto	 				 	 	#	extend	to	%rdx:%rax,	clobbers	%rdx	
	idivq		%rbx		 	#	quoBent	in	%rax,	remainder	in	%rdx	

UW CSE 401 Winter 2017 K-13

Control	Flow	

•  Basic	idea:	decompose	higher	level	operaBon	into	
condiBonal	and	uncondiBonal	gotos	

•  In	the	following,	jfalse	is	used	to	mean	jump	when	a	
condiBon	is	false	
–  No	such	instrucBon	on	x86-64	
– Will	have	to	realize	with	appropriate	sequence	of	
instrucBons	to	set	condiBon	codes	followed	by	condiBonal	
jumps	

–  Normally	don’t	need	to	actually	generate	the	value	“true”	
or	“false”	in	a	register	
•  But	this	is	a	useful	shortcut	hack	for	the	project	

UW CSE 401 Winter 2017 K-14

While	

•  Source	
	while	(cond)	stmt	

•  x86-64	
test:	 	<code	evaluaBng	cond>	
	 	 	jfalse	done	
	 	 	<code	for	stmt>	
	 	 	jmp		test	

done:	
–  Note:	In	generated	asm	code	we	need	to	have	unique	
labels	for	each	loop,	condiBonal	statement,	etc.	

UW CSE 401 Winter 2017 K-15

OpBmizaBon	for	While	
•  Put	the	test	at	the	end:	

	 	jmp		 	test	
loop: 	<code	for	stmt>	
test: 	<code	evaluaBng	cond> 		

	 	jtrue	 	loop	

•  Why	bother?	
–  Pulls	one	instrucBon	(jmp)	out	of	the	loop	
–  Avoids	a	pipeline	stall	on	jmp	on	each	iteraBon	

•  Although	modern	processors	will	oren	predict	control	flow	and	
avoid	the	stall	–	x86-64	does	this	parBcularly	well	

•  Easy	to	do	from	AST	or	other	IR;	not	so	easy	if	generaBng	
code	on	the	fly	(e.g.,	recursive	descent	1-pass	compiler)	

UW CSE 401 Winter 2017 K-16

Do-While	

•  Source	
	do	stmt	while(cond)	

•  x86-64	
loop: 	<code	for	stmt>	
	 	 	<code	evaluaBng	cond> 		
	 	 	jtrue		loop	

UW CSE 401 Winter 2017 K-17

If	

•  Source	
	if	(cond)	stmt	

•  x86-64	
	 	<code	evaluaBng	cond>	
	 	jfalse	skip	
	 	<code	for	stmt>	

skip:	

UW CSE 401 Winter 2017 K-18

If-Else	

•  Source	
	if	(cond)	stmt1	else	stmt2	

•  x86-64	
	 	 	<code	evaluaBng	cond>	
	 	 	jfalse	else	
	 	 	<code	for	stmt1>	
	 	 	jmp		done	

else: 	<code	for	stmt2>	
done:	

UW CSE 401 Winter 2017 K-19

Jump	Chaining	

•  ObservaBon:	naïve	implementaBon	can	
produce	jumps	to	jumps	

•  OpBmizaBon:	if	a	jump	has	as	its	target	an	
uncondiBonal	jump,	change	the	target	of	the	
first	jump	to	the	target	of	the	second	
– Repeat	unBl	no	further	changes	
– Oren	done	in	peephole	opBmizaBon	pass	arer	
iniBal	code	generaBon	

UW CSE 401 Winter 2017 K-20

Boolean	Expressions	

•  What	do	we	do	with	this?	
	x	>	y	

•  It	is	an	expression	that	evaluates	to	true	or	
false	
– Could	generate	the	value	(0/1	or	whatever	the	
local	convenBon	is)	

– But	normally	we	don’t	want/need	the	value	–	
we’re	only	trying	to	decide	whether	to	jump	

UW CSE 401 Winter 2017 K-21

Code	for	exp1	>	exp2	

•  Basic	idea:	Generated	code	depends	on	context:	
– What	is	the	jump	target?	
–  Jump	if	the	condiBon	is	true	or	if	false?	

•  Example:	evaluate	exp1	>	exp2,	jump	on	false,	
target	if	jump	taken	is	L123	
	<evaluate	exp1	to	%rax>	
	<evaluate	exp2	to	%rdx>	
	cmpq 	%rdx,%rax														#	dst-src	=	exp1-exp2	
	jng			 	L123	

UW CSE 401 Winter 2017 K-22

Boolean	Operators:	!	

•  Source	
	!	exp	

•  Context:	evaluate	exp	and	jump	to	L123	if	
false	(or	true)	

•  To	compile	!,	just	reverse	the	sense	of	the	
test:	evaluate	exp	and	jump	to	L123	if	true	(or	
false)	

	

UW CSE 401 Winter 2017 K-23

Boolean	Operators:	&&	and	||	

•  In	C/C++/Java/C#/many	others,	these	are	
short-circuit	operators	
– Right	operand	is	evaluated	only	if	needed	

•  Basically,	generate	the	if	statements	that	jump	
appropriately	and	only	evaluate	operands	
when	needed	

UW CSE 401 Winter 2017 K-24

Example:	Code	for	&&	

•  Source	
	if	(exp1	&&	exp2)	stmt	

•  x86-64	
	 	 	<code	for	exp1>	
	 	 	jfalse	skip		
	 	 	<code	for	exp2>	
	 	 	jfalse	skip	
	 	 	<code	for	stmt>	

skip:	

UW CSE 401 Winter 2017 K-25

Example:	Code	for	||	

•  Source	
	if	(exp1	||	exp2)	stmt	

•  x86-64	
	 	 	<code	for	exp1>	
	 	 	jtrue	doit		
	 	 	<code	for	exp2>	
	 	 	jfalse	skip	

doit: 	<code	for	stmt>	
skip:	

UW CSE 401 Winter 2017 K-26

Realizing	Boolean	Values	

•  If	a	boolean	value	needs	to	be	stored	in	a	
variable	or	method	call	parameter,	generate	
code	needed	to	actually	produce	it	

•  Typical	representaBons:	0	for	false,	+1	or	-1	
for	true	
– C	specifies	0	and	1;	we’ll	use	that	
– Best	choice	can	depend	on	machine	instrucBons	&	
language;	normally	some	convenBon	is	picked	
during	the	primeval	history	of	the	architecture	

UW CSE 401 Winter 2017 K-27

Boolean	Values:	Example	
•  Source	

	var	=	bexp;	
•  x86-64	

	 	 	<code	for	bexp>	
	 	 	jfalse		 	genFalse	
	 	 	movq	 	$1,%rax	
	 	 	jmp		 	storeIt	

genFalse:	
	 	 	movq 	$0,%rax 	 	 	 	#	or	xorq	

storeIt:		
	 	 	movq	 	%rax,offsetvar(%rbp)	 	#	generated	by	asg	stmt	

UW CSE 401 Winter 2017 K-28

BeXer,	If	Enough	Registers	
•  Source	

	var	=	bexp;		
•  x86-64	

	 	 	xorq		 	%rax,%rax	
	 	 	<code	for	bexp>	
	 	 	jfalse 	store	
	 	 	incq			 	%rax	

store: 		
	 	 	movq 	%rax,offsetvar(%rbp)			#	generated	by	asg	

	
•  BeXer:	use	movecc	instrucBon	to	avoid	condiBonal	jump	
•  Can	also	use	condiBonal	move	instrucBon	for	sequences	like		
x	=	y<z	?	y	:	z	

UW CSE 401 Winter 2017 K-29

BeXer	yet:	setcc	

•  Source	
	var	=	x	<	y;	

•  x86-64	
	 	movq	 	offsetx(%rbp),%rax				 	#	load	x	
	 	cmpq		 	offsety(%rbp),%rax			 	#	compare	to	y	
	 	setl			 	 	%al 	 	 			#	set	low	byte	%rax	to	0/1	
	 	movzbq	 	%al,%rax	 			#	zero-extend	to	64	bits	
	 	movq	 	%rax,offsetvar(%rbp)			#	gen.	by	asg	stmt	

UW CSE 401 Winter 2017 K-30

Other	Control	Flow:	switch	

•  Naïve:	generate	a	chain	of	nested	if-else	if	
statements	

•  BeXer:	switch	statement	is	intended	to	allow	
easier	generaBon	of	O(1)	selecBon,	provided	the	
set	of	switch	values	is	reasonably	compact	

•  Idea:	create	a	1-D	array	of	jumps	or	labels	and	
use	the	switch	expression	to	select	the	right	one	
– Need	to	generate	the	equivalent	of	an	if	statement	to	
ensure	that	expression	value	is	within	bounds	

UW CSE 401 Winter 2017 K-31

Switch	

•  Source	
switch	(exp)	{	
		 	case	0:	stmts0;	
		 	case	1:	stmts1;	
	case	2:	stmts2;	

}	
	

“break”	is	an	uncondiBonal	
jump	to	the	end	of	switch	

	

•  x86-64:	
		<put	exp	in	%rax>	
		“if	(%rax	<	0	||	%rax	>	2)	
								jmp	defaultLabel”	
		movq	 	swtab(,%rax,8),%rax	
		jmp	 	*%rax	
	 	.data	

swtab: 		
	 	.quad	L0	
	 	.quad	L1	
	 	.quad	L2	
	 	.text	

L0: 	<stmts0>	
L1: 	<stmts1>	
L2: 	<stmts2>	

UW CSE 401 Winter 2017 K-32

Arrays	

•  Several	variaBons	
•  C/C++/Java	
– 0-origin:	an	array	with	n	elements	contains	
variables	a[0]…a[n-1]	

– 1	dimension	(Java);	1	or	more	dimensions	using	
row	major	order	(C/C++)	

•  Key	step	is	evaluate	subscript	expression,	then	
calculate	the	locaBon	of	the	corresponding	
array	element		

UW CSE 401 Winter 2017 K-33

0-Origin	1-D	Integer	Arrays	

•  Source	
	exp1[exp2]	

•  x86-64	
	<evaluate	exp1	(array	address)	in	%rax>	
	<evaluate	exp2	in	%rdx>	
	address	is	(%rax,%rdx,8) 	#	if	8	byte	elements 		

UW CSE 401 Winter 2017 K-34

2-D	Arrays	

•  Subscripts	start	with	0	(default)	
•  C/C++,	etc.	use	row-major	order	
–  E.g.,	an	array	with	3	rows	and	2	columns	is	stored	in	
sequence:	a(0,0),	a(0,1),	a(1,0),	a(1,1),	a(2,0),	a(2,1)	

•  Fortran	uses	column-major	order	
–  Exercises:	What	is	the	layout?		How	do	you	calculate	
locaBon	of	a[i][j]?		What	happens	when	you	pass	
array	references	between	Fortran	and	C/C++	code?	

•  Java	does	not	have	“real”	2-D	arrays.		A	Java	2-D	
array	is	a	pointer	to	a	list	of	pointers	to	the	rows	

UW CSE 401 Winter 2017 K-35

a[i][j]	in	C/C++/etc.	

•  If	a	is	a	“real”	0-origin,	2-D	array,	to	find	a[i][j],	
we	need	to	know:	
–  Values	of	i	and	j	
– How	many	columns	the	array	has	

•  LocaBon	of	a[i][j]	is:	
–  LocaBon	of	a	+	(i*(#of	columns)	+	j)	*	sizeof(elt)	

•  Can	factor	to	pull	out	allocaBon-Bme	constant	
part	and	evaluate	that	once	–	no	recalculaBng	at	
runBme;	only	calculate	part	depending	on	i,	j	
– Details	in	most	compiler	books	

UW CSE 401 Winter 2017 K-36

Coming	AXracBons	

•  Code	GeneraBon	for	Objects	
– RepresentaBon	
– Method	calls	
–  Inheritance	and	overriding	

•  Strategies	for	implemenBng	code	generators	
•  Code	improvement	–	“opBmizaBon”	

UW CSE 401 Winter 2017 K-37

