
CSE 401 - Dataflow Extravaganza

1. Consider the following small program that we used as a dataflow example for live variable

analysis. This time all of the statements are labeled and we want to compute reaching

definitions.

L0: a = 0

L1: b = a + 1

L2: c = c + b

L3: a = b * 2

L4: if a < N goto L1

L5: return c

The reaching definitions dataflow problem is to determine for each variable definition which

other blocks in the control flow graph could potentially see the value of the variable that was

assigned in that definition. To simplify things, we will treat each individual statement above as a

separate block, and use the statement labels as the names of both the blocks and the definitions in

them. So, for example, reaching definition analysis would allow us to determine that definition

L0, which assigns to a, can reach block L1.

A definition d in block p reaches block q if there is at least one path from p to q along which

definition d is not killed.

This can be set up as a dataflow problem as follows: For each block b in the control flow graph,

define GEN(b) to be the set of definitions generated in that block and not subsequently killed in

the block, and KILL(b) to be the definitions killed by that block. These sets can be computed

once, statically, for each block. If block b contains d: x = a op b,

Then GEN(b) contains d, provided that d is not killed later in block b. KILL(b) contains all other

definitions d’ elsewhere in the program that define the same variable x.

Given the GEN and KILL sets for the blocks, we can compute the IN and OUT sets of

definitions that reach each block as follows:

 IN(b) = ⋃p∈pred(b) OUT(p)

 OUT(b) = GEN(b) ⋃ (IN(b) – KILL(b))

For this problem, compute the reaching definitions for the blocks in the given program

(treating each statement as a separate block). You should give a table with a row for each

block showing the GEN and KILL sets for that block, and then compute IN and OUT sets using

successive iterations until you there are no further changes to any IN or OUT set.

Note that this is a forward dataflow problem so the answer will converge faster if you start

computing with L0, L1, …

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0

L1

L2

L3

L4

L5

2. Very Busy

Rearrange the expressions in the blocks (i.e. moving expressions from one block to another) to

apply “Very Busy” expressions. In other words, where is the earliest I can compute each

expression without affecting the outcome?

 1.
Z = 4 * B
Y = A + C

2.
Y = 5
Z = Y + B

3.
X = A * B
Z = Y + X

4.
X = A * B
Z = Y + X

5.
Y = 3 * B
X = A + B

6.
Y = 3 * B
X = A * B

7.
Y = 2 * B

