Michael Asavareungchai

Bhrigu Rishi Parmar

CSE 403 HW3 LCO Writeup

Our project idea is to implement a two player racing game, which is played from a top down perspective. The concept of games on the cell phone is a hot idea, as the majority of cell phones contain games. New games for the cell phone are constantly being developed and sold, indicating a consistent demand for this type of product. We have not heard of a multiplayer racing game that equals our idea concept-wise. Our game will, therefore, provide a new experience for cell phone gamers, and since games are a hot item for phones, we believe that many people will want this game. It will appeal to kids and adults alike. An example player of our game would be a person who takes any sort of mass transit and wants to pass the time during the commute. The competitive aspect of our game will attract early teens who aspire to be the best at our game. We anticipate completing our game before the demand for such games shifts dramatically. In other words, we will keep our development time small. With the demand for our project established, let us now describe our project in further detail.

The name of our project is Ultimate Super Cars: MV. It is a two player racing game where the racers will compete head to head over different phones. The racers will take their Ultimate Super Cars to the vertically scrolling track and maneuver back and forth while accelerating to their car’s top speed. Racers will have oil slicks and turbo boosts to help them get the upper hand on the track. Obstructions on the track will make the race even more challenging. If a car crashes into an obstruction, it will be reset on the track and will have to accelerate to top speed again. Oil slicks will make the player lose control of his car momentarily. Turbo boosts will make the player gain speed momentarily. If the two cars collide, both cars will be reset on opposite sides of the track. Each car will be customizable, from the way it looks to the way it runs. The track record of each player’s wins and losses will be kept so they can see how they compare against other players. An optional help screen can be viewed while the game is in progress by the press of a button.

[image: image1.png]callServer(key)

kev
matches Server sends

Type Phune # of Sorver: watOppunent(key)
opponent and a savekey ey bk
uniue key
[icalFilp e
E— calTpponent(key)
calServer(iey)
Opporent callsthe
sarvor withthe key
provided o t
Lkt — [Disconnect]
[Serversends BEGIN_GANE signl
o both lyers
—
e i
ulli“mr in _—
wa o sgrlpackets om | T et o)
players < _buth players

Figure 1: The model for the game

The opening screen of the game will give players the option of playing the game right away, or viewing the instructions. If the play game option is selected, the phones are connected through the server that is contained within our servlet code. Each client gets the roadmap at startup, and then waits for both players to indicate that they are ready to start the game. If both say no, or the timer reaches zero, then they will disconnect. Otherwise, the server will send a BEGIN_GAME signal to both players. The server then waits for signal packets from the players, then the game information gets sent back and forth from the players and the server. The game information will continue to be sent back and forth until the game ends.

The signal package will contain the player number, the speed of the player, and info on any oil slicks that have been released. General update information that will be sent includes the location of your own car; and the location, velocity and oil leaks of the opponent, and also whether or not a player has won the race.

As far as the responsibilities are concerned, clients get the roadmap at startup including the roadblocks from the server. Once the game starts, the clients (players) send a signal to the server every 100ms. We need such transfer speeds in order to display any car collisions and oil slicks on the track without too much noticeable lag. The timer for this event is on the client side. Similarly for the server, the update information packet is sent every 160ms and the timer for this event is on the server side.

Since the traditional server must be incorporated into a servlet, we treat the server as a thread within a servlet.

[image: image2.png]Tomeat

HTTP

f Thread
created

Serviet

Pratocol

Figure 2: Starting up the server

As figure 2 shows, servlet is instantiated from the Web with the traditional HTTP protocol. In the servlet, there would be a server loop that would listen on the well-known port and spawn connections. Once two players have joined the game, the server follows the model shown on Figure1.

In order for the game to work well, we need a large LCD screen because it would allow for better viewing of the graphics. Screen size of 84 x 48, common to new cell phones, should be adequate. A memory of about 32KB should be enough for cell phones because they only need to store the roadmap. Since we need to transfer only about 500 bytes every 10th of a second, current data transfer rates of 9.6 kbps to 14.4 kbps may be inadequate. The 2.5G technology with support for 56kbps to 144 kbps would be sufficient.

The plan above is quite feasible. All the system requirements mentioned are available today in the US with the exception of 2.5G. This technology is, however, available on the new cell phones in the US today. Conceptually, the idea should be feasible with a dedicated team of 4-6 programmers. Coordination among the developers is very crucial to the successful-timely release of this game.

In the early stages of our product’s lifecycle, we, the development team, will develop our game to completion and make sure that it is bug free and that it achieves or surpasses the initial plan we had for the game in the beginning. In this early development stage, we will be the only users of our program. We will release the game after it is developed. Once our game is released as a commercial product, we will support this game until the end of June. Should we get hired somewhere to work on a different product in the meantime, then we will try to find a small team of people to support our game. As for the server side of our game, we will need someone to update the server software as necessary, ensure that the server is running, and to ensure that the server can handle its user load.

