CSE403

Eric Chu – likhan03

Jordan Kiang - jkiang

LCO1

DAWG Tags
Introduction

One of the most commonly used features of today’s cellular phones is the contact list that stores contact information, such as phone numbers and email addresses. However, this feature is limited to storing contact information that we already know. If we want to contact people but do not know their phone number and email, we will have to check the Internet or the phone book, which is inconvenient and often unavailable. We want to improve our contact list such that we only need to know a person’s name to contact him or her. One approach is to query the person’s contact information from an existing website directory via a servlet, and return that information to the users’ phone.

Operational Concept

But which website? The choice of website depends on the group of people the users want to contact. As persons affiliated with the University of Washington, we most likely want to call members of the UW community. The UW provides a web accessible directory of staff, faculty, and student data. The application that we envision would take in a person’s name as input. If this person is a member of the UW community and if he or she has not chosen to remove his or her entry in the UW directory, then the application would return his or her phone number, email address, and even the major (if the person is a student) or the position (if the person is a member of the staff or faculty). In the case where the user provides only a last name or first name, the application would return a list of people who have the same last name or first name specified. The user would then go through this list and select any name to obtain more information regarding the selected person. If the person is the one whom the user wants to contact, the user could call the number associated with the person.

A natural extension of this application would be to allow users to query multiple websites at a time or have a list of websites that the users could choose to query from. To do this, we would need to implement a separate parser for each different directory. Another extension would be to search by other properties of the person, such as the department, instead of the name. This feature allows users to look a person up if all they remember is the department to which the person belongs, for example. The UW directory already supports queries on other fields, such as department affiliation, phone number, email address, and mail box number.

In addition to being able to contact anyone from an organization by just knowing his or her name, another advantage of this application is that we don’t need to save readily accessible contact information on the phone anymore. Therefore, we can use the space to store other data.

System Architecture

Our system design would consist of three components: a Midlet running on the client cell phone, a Servlet running on a Tomcat server, and the existing UW directory database. The directory database is publicly accessible through a webform located at http://www.washington.edu/home/peopledir/. The Midlet would issue a request to the Servlet with specified data indicating the users’ search terms. The Servlet would then pass on the client search as an http request to the UW webserver with the given search terms included in the requests’ POST data. Having the Midlet communicate through the intermediary Servlet would allow much of the data parsing to be done by the Servlet, and return the data to the Midlet in a more compact format. This functionality is particularly significant on queries that return hundreds of persons.

Life Cycle Plan

The target users of this application are the members of the UW community, or anyone who often needs to call people from the UW. However, we can extend the same idea to implement applications for different groups of users such as companies and other large organizations that have a website with their members’ contact information capable of being queried over the web.

This application would need minimal support because the servlet can essentially run on its own as it only relies on a static format for the web directories it accesses. The only case where the servlet would need to be updated would be if the UW’s web directory format changed.

Companies or universities that are interested in having their contact information available to the application could cooperate in supplying the details of their existing directory service. Anybody with a reasonable level of Java experience and knowledge of Java’s parsing functions could add functionality to support the new directory to the existing servlet.

Feasibility Rationale

Indications at this point from our collective experience with Java and some early prototyping suggest that this project is certainly feasible. Also, similarities in overall design with some projects implemented in the previous quarter and listed on the previous quarter’s website imply that there should not be any major difficulties.

There are essentially two components of the system architecture: the communication between the Midlet and the Servlet, and the communication between the Servlet and the UW directory. Both portions seem feasible to implement.

· Midlet ↔ Servlet

Here the user will enter the desired search query into a Midlet running on their device. The Midlet then requests that the Servlet fetches the specified data from the directory database. The details of the search interface running on the Midlet and the exact method by which the Midlet communicates with the Servlet have not yet been investigated in great detail. As the project specifications are essentially based around this step, it is unlikely that this portion of the project implementation will cause great difficulties. Once the Servlet has obtained the requested data, it returns the requested data to the Midlet in a defined format. This format has not yet been decided upon, but may consist of some markup text.

· Servlet ↔ UW Directory
The Servlet receives the user-entered data from the Midlet. The webform interface to the directory database accepts http POST requests, so the Servlet will use the search data provided by the Midlet to generate such a POST request. Likely, this will be done through Java’s built-in URL and URL Connection classes. Investigation has revealed that the interface to the UW directory webform is fairly straightforward. As discussed earlier, query data is sent to the web server via in the http POST data and consists of the following arguments:

	method
	Describes the type of search, should be one of the following:

name – search by the person’s name, can be any portion of the person’s name, if both names should be of the form <last>, <first>

dept – search by the person’s department

mail – search by the person’s email address

box – search by the person’s mail box number

phone – search by the person’s phone number

	term
	The search term we are looking for.

	length
	The utility of this argument has not yet been determined. All tested http requests fill this field with “sum”, but its absence does not seem to affect results.

	whichdir
	Describes which database to look in (faculty and/or student):

both – search both faculty and student directories

faculty – search the faculty database exclusively

student – search the student database exclusively

Table 1: Argument data should be encoded as is typical for form data. This encoding can be easily done through Java’s URLEncoder class’s encode method.

Sample POST data, searches both student and faculty databases for “Johnson, Doug”:

method=name&term=Johnson%2C+Doug&length=sum&whichdir=both

Since the webform was naturally designed to return an html page that could be rendered by a browser, the http response includes a large amount of extraneous text that will need to be parsed. A sample relevant data return follows:

<div class="rsummary">Last name "Johnson", first begins with "Doug": 1 Faculty/Staff, 1 Student
</div><h3>Faculty/Staff: Last name "Johnson", first begins with "Doug"</h3><div class="indent"><table border="1" cellpadding="2" cellspacing="0" summary="results"><tr><th>Name</th><th>Phone</th><th>Box</th><th>Email</th><th>Full Listing</th></tr>

<tr><td valign="top">Douglas W. Johnson </td><td valign="top">+1 206 616-2406 </td><td valign="top">352350 </td><td valign="top">finson@u.washington.edu </td><td><input type="hidden" name="dn0" value="cn%3DDouglas+W.+Johnson%2C+ou%3DComputer+Science+and+Engineering%2C+ou%3DFaculty+and+Staff" /><input type="submit" name="expand0" value="Expand" /></td></tr>

</table>
Many entries of the same form may be returned if the search term matches multiple individuals. It will be the Servlet’s job to parse and interpret this data. As a prototype Servlet is already capable of retrieving the data, further implementation would be primarily a matter of parsing the returned text. This could be accomplished through Java’s string functions and regular expression facilities.

Given that both halves of the system architecture at this point appear perfectly feasible, we are confident that implementation of this project could be completed within the timeframe of the assignment.

Conclusion

The “DAWG Tags” system would provide a relatively straightforward way for a J2ME enabled device to poll the UW’s directory service to obtain contact information for persons affiliated with the University. It would require minimal support as the Servlet should need no particular attention to continue operating. The project would be open to extentions in the future, including the possibility of supporting additional web accessible directories.

