James Crompton

Hendry Prasetyo

CSE403 HW3

Project Proposal

Operational Concepts:

We are proposing a video game capable of running in both single and multi player modes. It is designed to interest the general gaming public who owns cell phones. It will require at least one cell phone capable of supporting java midlet to play the game. The game is beneficial because it provides a source of entertainment without the need for additional hardware. The game may also be enjoyed without using expensive cell phone minutes if the user plays single player or multi player from the same phone. Those users who wish to play games with their friends across some distances may still do so through network, and since games are usually short it will not cost them excessively as other programs might. Multi player between multiple phones may require the use of a servlet depending on whether or not we are able to get a phone-to-phone system working. If phone-to-phone system is not feasible then in the worst case they need to run a servlet to manage their network games.

The game is for entertainment purposes and so has a wide range of potential customers. One person may be waiting for a bus and want to play a quick game or two against the computer. Another may be waiting for a doctor and can play a game with his friend who is back home. The nice thing about the game is that it requires minimal support. If saved games are implemented then each user must delete games that he no longer wants. Alternatively a limit may be set on the number of games that one is allowed to have (maybe 2) so that it does not eat up too much space. If the servlet picture is used then the user will be forced to run a servlet to play multi player across phones. This would be an inconvenience for most but would still be acceptable. The goal, however, is to be able to implement the connection phone-to-phone or provide support for both.

System Requirements:

The project is a video game where each player owns one or more units and is trying to destroy all the enemy units. At minimum we are going to implement support for two players (1 human and 1 computer AI or both human) and give each one unit. Each team will be given alternating turns where they can aim their weapon at the enemy. Firstly the user can set the angle of the trajectory by clicking up or down key. After the angle is set, a moving bar indicating firing power will oscillate back and forth. When the user clicks the fire button, the weapon will fire with the given angle and power. If the weapon hits the enemy it will harm or destroy the enemy. The battlefield will be a terrain which can provide some obstacles and difficulty to the aiming process. Weapons will be able to damage the terrain if they hit it. The game will start with a menu system allowing the user to play a single player or multiplayer game or to adjust the game options. The Single player option will allow the user then to select what AI difficulty to play against, or they may choose to play a progressive game, where after each victory the AI improves. The multiplayer option allows the user to select multiplayer game using one phone or two phones. If one phone is used, each team on the map will get a turn but will be controlled by only one phone. If two phones are selected then there are two possibilities depending on whether phone-to-phone networking or phone-to-phone through server networking is implemented. If the server is not used then one phone hosts a game and the other phone selects the join game option in the multiplayer menu and designates what phone to connect to. In the servlet model, the host phone tells the servlet that it wants to start a game. The servlet does the work to get the game ready and waits for people to join. When the second phone clicks to join, the servlet responds with a list of games. The user then can select which game to join and the game will start.

Additional features which may be included but are not essential are:

- Allowing each team to have more than one unit.

- Allowing more than two teams to play.

- Adding more Weapons/Shields/Accessories.

- Adding a purchasing system where after each battle, money is distributed to each player accordingly and they may purchase a different weapons, armor and accessories for the next battle.

- Adding a wind factor to adjust trajectory and make aiming more difficult.

- Allowing units some mobility during their turns.

- Giving each unit a fixed amount of time to perform each turn. Time-up means no action for that turn is carried out.

- Adding in ability to select different maps.

- Adding in ability for random map generator.

- Designing custom map editor (for JVM not midlet).

- Adding in ability for unit to have a certain amount of stamina or health where they can survive more than one shot.

- Adding in support for smart damage calculation where glancing blows do little damage but direct hits take off a lot.

- Adding in Save and Load game support. Also the game provides a way to manage saved games.

- Adding in sound

- Adding background to supplement terrain and units.

System and Software Architecture:

· Single Player:

AI is simple and it does not require a fast processor. Simple physics calculations are to determine trajectory.

The graphics will be handled using Java’s 2D Game API that provides support for layered management and the ability to animate sprites as well as move the fired weapon and find out when and what it hits. Alternatively standard drawing functions may be implemented if the Game API has unforeseen drawbacks.

· Multiplayer:

- Servlet picture

The servlet will manage games so that network traffic is minimized and so the power of the server may be used to speed up calculations in the game. When a phone sends the message that it wants to start a game, the servlet remembers who started it and does all the calculations. It then informs the host phone when another phone joins the game. The server then does most of the calculations and tells each phone what happened. When a player decides the angle and power to fire at, that data is sent to the servlet. The servlet decides what happens and then informs both players.

It is also possible that the servlet will support more than two players which gives a network advantage over the phone to phone system; each phone in the servlet picture always only has to talk to the server, but in phone-to-phone pictures, every phone have to talk to every other phone. Also the server allows for a large storage space which can be taken advantage of.

- Phone-to-Phone picture

There will be one player who acts as a host phone and starts a game. Then another phone will join the game by telling the host phone and connecting to it. One player will be given his turn and the other will have to wait. The active player will fire on his phone and send the information to the other. Both phones will do the calculation of what happened and confer results to ensure that they do not become unaligned in game state. After they have agreed on what has happened, the turn will switch to the other player who will then fire his shot. This continues until one player wins or someone quits. If they quit, the game is lost unless the save game feature is implemented in which case an option may be provided for “auto-saving” on connection loss.

Life Cycle Plan:

The system is being developed because many people are interested in entertainment and our project specifically provides portable and multi-player entertainment.

In the first week of production (for the alpha release) we intend to accomplish the basic menu structures and core structure of the program including loading a simple map, capturing user input and painting basic graphics to the screen. This will give a functional base to implement the working parts of the program.

In the second and third weeks The AI and physics algorithms will be implemented along with the multiplayer support. Some of this code for the AI and physics will be included in the servlet package as well. The majority of the work in these two weeks will be getting the network to communicate well and getting the game to perform the calculations based on the input.

In week four we will concentrate on any add-ons and fixes that we feel necessary or important. In the last 3 days there will be a code freeze on add-ons, and only fixes are allowed to be added. During these days there will be a lot of testing and patching where necessary.

Feasibility Rational:

This seems quite feasible as there will be five people or so to work on all these tasks and most of the features are optional and will not be attempted until the core of the game is complete. User will want this program because it will be a free game that they can play in their spare time and such games have met with large success in the past. For example Worms, which is different but along the same genre, is a very popular game, or even Guerrilla’s for Qbasic, which is very similar though not as advanced as our project, was quite popular. The design of the game is not beyond the capabilities of the phones as there will be a minimal amount of graphics. The game, consequently, will be small and fast given the fact that the algorithms are simple. Data that must be transferred through the network is merely trajectory information and so does not need a large bandwidth. Hence the network will not be a bottleneck. All the requirements for this program can be met and there is a market for the product so it is sure to succeed.

