Construction

CSE 403, Spring 2004
Software Engineering

http://www.cs.washington.edu/education/courses/403/04sp/

26-Apr-2004 cse403-11-construction © 2004 University of Washington



Readings and References

e Reading

» Chapter 18, Daily Build and Smoke Test, Rapid
Development, McConnell

* References
» The Joel Test: 12 Steps to Better Code, Joel Spolsky

http://www.joelonsoftware.com/printerFriendly/articles/fog0000000043.html

26-Apr-2004 cse403-11-construction © 2004 University of Washington



Some construction fundamentals

e Agreed-on coding standards
» naming, layout, documentation

o Data-related concepts
» SCope, persistence, binding times
e Control-related
» complexity, control structures, exceptions

* Errors and exceptions
» assertions, defining and handling exceptions

26-Apr-2004 cse403-11-construction © 2004 University of Washington



More construction fundamentals

 Integration strategies
» Unit-testing and debugging
» Build and packaging practices

e Code tuning and performance measurement

e Programming tools
» editors, IDE, interoperability
» group work support tools (email, change visibility)
» source code revision management
» bug tracking

26-Apr-2004 cse403-11-construction © 2004 University of Washington 4



The Joel Test

* Do you use source control?

e Can you make a build in one step?

* Do you make daily builds?

* Do you have a bug database?

* Do you fix bugs before writing new code?

* Do you have an up-to-date schedule?

* Do you have a spec?

e Do programmers have quiet working conditions?
e Do you use the best tools money can buy?

e Do you have testers?

* Do new candidates write code during their interview?
e Do you do hallway usability testing?

26-Apr-2004 cse403-11-construction © 2004 University of Washington



Disclaimer (Spolsky)

Of course, these are not the only factors that determine
success or failure:

» In particular, if you have a great software team working on a
product that nobody wants, well, people aren't going to want
It.

» And it's possible to imagine a team of "gunslingers" that
doesn't do any of this stuff that still manages to produce
Incredible software that changes the world.

But, all else being equal, If you get these 12 things right,
you'll have a disciplined team that can consistently

deliver.

26-Apr-2004 cse403-11-construction © 2004 University of Washington 6



Software Configuration Management (SCM)

o SCM is the practice of managing project
artifacts so the the project stays in a consistent
state over time

» processes for evaluating proposed changes
» tracking changes and enabling roll-back
» handling multiple versions

* Most often applied to source code, but also
beneficial for requirements, design, test cases,
user documentation, scripts, etc, etc

26-Apr-2004 cse403-11-construction © 2004 University of Washington 7




Source Control

e The team product is a complete working program

» correctly built from synchronized and correct source
code and resources and tested appropriately

* Multiple people working on one collection of
sources can be a nightmare unless managed well
» Qverlapping changes, old and inconsistent versions
» Disks crash, houses burn, computers are stolen

» There are good tools to help you manage integration!
e use CVS, not caffeine

26-Apr-2004 cse403-11-construction © 2004 University of Washington 8



Make a build in one step

* On good teams, there’s a single script you can
run that
» does a full checkout from scratch
» rebuilds every line of code

» makes the binary executable files in all versions,
languages and #ifdef combinations

» creates the installation package
» creates the final media - CDROM, web site, ...

o All steps are automatic and exercised regularly

26-Apr-2004 cse403-11-construction © 2004 University of Washington 9



Daily Build and Smoke Test

 Build the entire product every day and run a
good test suite against the new version

» automatic and frequent

» canary In the mine - find out early that you’ve got
problems and fix them before disaster strikes

e Benefits
» Minimizes integration risk
» Reduces risk of low quality
» Supports easier defect diagnosis
» Improves morale - developers, managers, customers

26-Apr-2004 cse403-11-construction © 2004 University of Washington 10



Using Daily Build and Smoke Test

« Build daily

» Developers check in working modules

» The build Is the heartbeat or sync pulse of project
* Check for broken builds and fix problems

» Define appropriate quality level
» At minimum, build should be useful for testing

o complete compile, link, package, and pass smoke test

e Smoke test daily
» exercise entire system from end to end
» grow the tests with the system

26-Apr-2004

cse403-11-construction © 2004 University of Washington

11



Use a bug data base

* You need to know

how to reproduce the bug
expected behavior, actual behavior
current owner of the bug

status (open, fixed)

e You can’t keep the bug list in your head!

 There are numerous tools available

» Don’t use something that is so fussy that it is a big pain to
enter, comment on, and close bugs

» free trial version of FogBUGZ is available
» an Excel spreadsheet can do the job

>

\Y4

>

\Y4

>

v

>

v

26-Apr-2004 cse403-11-construction © 2004 University of Washington

12



Fix bugs before writing new code

 Don’t build the termites into the structure

» Bugs are always easier to find soon after creation
rather than after time has gone by

e Sometimes bugs reveal fundamental problems
» You may have a basic concurrency problem!
* You can’t accurately schedule the repair and

release of a system made from defective parts
held together with duct tape and prayer

26-Apr-2004 cse403-11-construction © 2004 University of Washington

13



Up to date schedule

e “It will be done when it’s done!”
» When will my computer be repaired?
» When will you finish your degree?
» When will you have a releasable product?
e Confidence in the schedule enables all sorts of
decision making and planning to go on
» lower stress, higher morale all around

* A good schedule helps you resist feature creep
» Don’t let the doodads build up and delay delivery

26-Apr-2004 cse403-11-construction © 2004 University of Washington 14



Have a Good Specification

e Know what you are building
» Write It early
» Keep It up to date

* The spec Is the tool that can help you see
where you are going to have problems
» Are the scenarios realistic?
» How you are going to accomplish the promises?

» It’s a lot easier on everybody to change the
promise now than to break the promise later

26-Apr-2004 cse403-11-construction © 2004 University of Washington 15



Have quiet working conditions

e Minimize uncontrollable distractions
» turn off your emalil

* Be focussed when you are alone and working
» get In the zone and blast away

* Be focussed when you are meeting and
discussing with others

» communication Is important, so make good use of
the time you are together

26-Apr-2004 cse403-11-construction © 2004 University of Washington 16



Use the best tools money can buy

e This doesn’t mean the most expensive tools!

e Spend the time to understand
» which tools you need
» which tools you already have
» what you need to be more productive
 |f you need an investment, think about how to
request It then stand up and request it

» There Is a lot of money available, why should it be
spent on you?

26-Apr-2004 cse403-11-construction © 2004 University of Washington 17



Use testers as basic part of the team

» Testing Is a different mindset from developing

e |t can be Interesting to do and very revealing In
Its results

 Your customers are going to test all the nooks
and crannies of your system anyway
» testers are your friends, not your enemy!
» find out the problems now, not after shipping

26-Apr-2004 cse403-11-construction © 2004 University of Washington 18



Write code during interviews

« \We are not hiring, but still ...
» You are writing code while learning the processes
» YOu are using a variety of tools and processes

 Think about your projects at an abstract level
» Could you describe the successes and problems in
the project life cycle?

» Could you lay out a project plan for a hypothetical
system product that uses a reasoned selection of
tools and techniques?

26-Apr-2004 cse403-11-construction © 2004 University of Washington 19



Hallway Usability Testing

* Does this project and its design make sense to
somebody who Is not married to the project?

» et somebody new use the product

»

»

»

>

v

DO t
DOt

DO t
of?

ney understand what it 1s?
ney like it?

ney make assumptions that you never thought

It only takes a few people doing this to understand
If you are on track.

26-Apr-2004

cse403-11-construction © 2004 University of Washington 20



Some support tools

* Ant - build, package, test integrator
 JUniIt - testing framework

e JavaNCSS - simple code metrics

» JDepend - design quality metrics

e Checkstyle - coding standard checker
 FogBUGZ - bug tracking

e CVS - source code revision management

26-Apr-2004 cse403-11-construction © 2004 University of Washington

21



