Verification and Validation

CSE 403, Spring 2004
Software Engineering

http://www.cs.washington.edu/education/courses/403/04sp/

Readings and References

10-May-2004 cse403-14-verify-validate © 2004 University of Washington

* References

» If You Didn’t Test It, It Doesn’t Work, Bob Colwell, IEEE
Computer
e http://www.computer.org/computer/homepage/0502/Random/
» Acknowledgment

» much of the content of this lecture is derived from a similar
lecture by G. Kimura in an earlier instance of CSE 403

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 2

Verification and Validation

 Verification: “Did we build the system right?”
» Design and Implementation verification
» Does the system do specific tasks correctly?
» Developer / Tester has the knowledge

* Validation: “Did we build the right system?”
» Requirements validation
» Does the system do the required set of tasks?
» Customer / Integrator has the knowledge

Some Approaches to Verification

10-May-2004 cse403-14-verify-validate © 2004 University of Washington

* Process

» Improving the likelihood that code is correct
» Testing

» A dynamic approach
* Proof of correctness

» Use formal analysis to show an equivalence
between a specification and a program

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 4

Process

: : -_J e puding 73
Testing vs. Proving -4

 Process includes a broad set of ideas and
approaches
» Software inspections, walkthroughs, reviews
» Capability maturity model, 1ISO 9000
» etc

 Software correctness depends on thousands
and thousands of details being correct
» Good processes help you avoid making mistakes
» Processes are not magic

. . -
* Dynamic Testing o™
» Builds confidence (not certainty)
» Can only show the presence of bugs, not their absence
» Used widely in practice

» Costly
» Static Proving
» Proofs are human processes - mistakes are possible!
» Applicability is limited in practice
» Extremely costly

10-May-2004 cse403-14-verify-validate © 2004 University of Washington

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 6

Engineering: intelligent compromise

Testing

» Dynamic techniques are unattractive because
they are unsound
» you can believe something is true when it’s not
» Static technigues are unattractive because they
are often very costly
» and can overlook fundamental problems

* The truth is that they should be considered to
be complementary, not competitive

10-May-2004 cse403-14-verify-validate © 2004 University of Washington

 Testing is by far the dominant approach to
demonstrating that code does what it supposed
to (whatever that means!)

» Testing is a lot like the weather
» everybody complains about it
» but nobody seems to do much about it

» However, unlike the weather, you can actually
do something about it!

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 8

Terminology

An error

» mistake the programmer made in design or implementation
leads to a defect

» inappropriate code
that leads to a fault

» when a program'’s internal state is inconsistent with what is
expected

that causes a failure.
» when the program doesn't satisfy its specification

Root cause analysis

 Track a failure back to an error
» Failures are precious information because an error
has finally become visible
* ldentifying errors is important because it can
» help identify and remove other related defects
« other defects might not cause visible failures yet

» help a programmer (and perhaps a team) avoid
making the same or a similar error again
 If an error is made once, it is very likely made twice

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 9 10-May-2004 cse403-14-verify-validate © 2004 University of Washington 10
Discreteness Kinds of testing
« Testing software is different from testing widgets « Unit Big bang
» In general, physical widgets can be analyzed in terms of « White-box « Integration
continuous mathematics
» Software is based on discrete mathematics * Black-box * Acceptance
* Why does this matter? » Gray-box » Stress
* In continuous math, a small change in an input * Bottom-up * Regression
corresponds to a small change in the output « Top-down « Alpha
» This allows safety factors to be built in ..
. : : » Boundary condition * Beta
* In discrete math, a small change in an input can _
correspond to a huge change in the output * Syntax-driven * elc

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 11

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 12

Picking Test Cases

« A goal of picking a test case Frogram
is that it be characteristic of ~ B&ha
a class of other tests

e That is, one case builds
confidence in how other
cases will perform

a2y

Cover the behavior space

« The overall objectiveisto ~ Frogram
cover as much of the '
behavior space as possible

» It’s an infinite space ...

* Ingeneral, it’s useful to
distinguish the notions of
common vs. unusual cases
for testing

5
Cases Cases h
10-May-2004 cse403-14-verify-validate © 2004 University of Washington 13 10-May-2004 cse403-14-verify-validate © 2004 University of Washington 14
Black box testing Equivalence partitioning

» Treat the unit under test as a black box

» You can hypothesize about the way it is built, but
you can’t see inside it

» Depend on a specification, formal or informal,
for determining whether it behaves properly

» How to pick cases that cover the space of
behaviors for the unit?
» equivalence partitioning, boundary values, etc
» independent testers

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 15

» Based on input conditions

» If input conditions are specified as a range, you
have one valid class (in the range) and two invalid
classes (outside the range on each side)

» If specified as a set, then you can be valid (in the
set) or invalid (outside the set)

» Etc.

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 16

Boundary values

Off-the-wall testing

» Problems tend to arise on the boundaries of
input domains than in the middle

S0, extending equivalence partitioning, make
sure to pick added test cases that exercise
inputs near the boundaries of valid and invalid
ranges

 Real life and real people are not interested in
what you thought the specification said
» Life takes strange turns
» Users are not focused on treating your program
with kid gloves
* When your program is released in the wild, it
will get knocked around

» welcome the comments of the tester who pushes
your program to its limits, don’t shout them down

10-May-2004 cse403-14-verify-validate © 2004 University of Washington

17

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 18

White box testing

White box coverage

* In this approach, the tester has access to the
actual software

» They needn’t guess at the structure of the code,
since they can see it

» The focus tends to shift from how the system
behaves to what parts of the code are exercised
* this can be very useful, and very misleading
» The tester’s challenge: Can you find a defect
that leads to a fault that causes a failure?

10-May-2004 cse403-14-verify-validate © 2004 University of Washington

19

* In black box, the tests are %
usually intended to cover /%

the space of behavior
* In white box, the tests are

usually intended to cover 7
the space of parts of the /%
program
7 v
7
10-May-2004 cse403-14-verify-validate © 2004 University of Washington 20

Statement coverage

Weakness

» One approach is to cover all statements

» Develop a test suite that exercises all of a program’s
statements

* What’s a statement?
max = (x >y) ?x: b;

if x >y then

» Coverage may miss some obvious issues

» In this example (due to Ghezzi et al.) a single test
(any negative number for x) covers all statements

» But it’s not satisfying with respect to input
condition coverage, for example

if x <0 then

mx = X
el se
max =y
endi f
10-May-2004 cse403-14-verify-validate © 2004 University of Washington 21

X = -X;
endi f;
Z = X;
10-May-2004 cse403-14-verify-validate © 2004 University of Washington 22

More Coverage

Path Coverage and Loops

» Edge coverage
» Use control flow graph (CFG) representation of a program
» Ensure that the suite covers all edges in the CFG

 Condition coverage
» Complex conditions can confound edge coverage
if ((p!= NULL) && (p->left < p->right)) ...
¢ s this asingle conditional statement in the CFG?
« How are short-circuit conditionals handled?
« Path coverage
» Edge coverage is in some sense very static
» Edges can be covered without covering paths (sequences of edges)
» Paths are better models of the actual execution

10-May-2004 cse403-14-verify-validate © 2004 University of Washington

23

* In general, we can’t bound
the number of times a loop
executes

e So there are an unbounded
number of paths in general

» We resort to heuristics like
those from black box testing
to exercise these loops

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 24

Some more practical aspects

Final note on testing

» Who tests the tests, especially a large complicated test?
» If your test program generates random data, who confirms the results?
» Another example is testing trig functions.

 Testing the error cases can be a wider set of inputs. You have
two problems
» Making sure you have proper test coverage and
» Making sure the results are correct.

 Fault injection is another way of testing systems.
» For example, injecting 1/O failures in a disk controller can test the error
cases for the disk driver and file system.

» Another example is injecting memory allocation errors, to see how
programs behave when they run out of memory.

It’s unsound and based on heuristics
It’s extremely useful and important

Good testing requires a special mindset

» “I’m going to find a way to make that system fail!”

» “My test case is a success - it found a system problem.”
Good coding requires a special mindset

» “Nobody’s going to break my code!”

» “Good thing we found the failure now, not in real life.”

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 25

10-May-2004 cse403-14-verify-validate © 2004 University of Washington 26

