
1

Quality Assurance:
Test Development & Execution

CSE 403
Lecture 23

Slides derived from a
talk by Ian King

Test Specifications

What questions do I want to answer about
this code? Think of this as experiment design
In what dimensions will I ask these
questions?

Functionality
Security
Reliability
Performance
Scalability
Manageability

Test specification: example
CreateFile method

Should return valid, unique handle for
initial ‘open’ for appropriate resource
subsequent calls for shareable resource
for files, should create file if it doesn’t exist

Should return NULL handle and set error indicator if resource
is

nonexistent device
inappropriate for ‘open’ action
in use and not shareable
unavailable because of error condition (e.g. no disk space)

Must recognize valid forms of resource name
Filename, device, ?

Test Plans
How will I ask my questions? Think of this as
the “Methods” section
Understand domain and range
Establish equivalence classes
Address domain classes

Valid cases
Invalid cases
Boundary conditions
Error conditions
Fault tolerance/stress/performance

Test plan: goals

Enables development of tests
Proof of testability – if you can’t design
it, you can’t do it
Review: what did you miss?

Test plan: example
CreateFile method

Valid cases
execute for each resource supporting ‘open’ action

opening existing device
opening existing file
opening (creating) nonexistent file

execute for each such resource that supports sharing
multiple method calls in separate threads/processes
multiple method calls in single thread/process

Invalid cases
nonexistent device
file path does not exist
in use and not shareable

Error cases
insufficient disk space
invalid form of name
permissions violation

Boundary cases
e.g. execute to/past system limit on open device handles
device name at/past name length limit (MAXPATH)

Fault tolerance
execute on failed/corrupted filesystem
execute on failed but present device

2

Performance testing

Test for performance behavior
Does it meet requirements?

Customer requirements
Definitional requirements (e.g. Ethernet)

Test for resource utilization
Understand resource requirements

Test performance early
Avoid costly redesign to meet performance
requirements

Security Testing

Is data/access safe from those who should
not have it?
Is data/access available to those who should
have it?
How is privilege granted/revoked?
Is the system safe from unauthorized control?

Example: denial of service
Collateral data that compromises security

Example: network topology

Stress testing

Working stress: sustained operation at
or near maximum capability
Goal: resource leak detection
Breaking stress: operation beyond
expected maximum capability
Goal: understand failure scenario(s)

“Failing safe” vs. unrecoverable failure or
data loss

Globalization

Localization
UI in the customer’s language
German overruns the buffers
Japanese tests extended character sets

Globalization
Data in the customer’s language
Non-US values ($ vs. Euro, ips vs. cgs)
Mars Global Surveyor: mixed metric and
SAE

Test Cases

Actual “how to” for individual tests
Expected results
One level deeper than the Test Plan
Automated or manual?
Environmental/platform variables

Test case: example

CreateFile method
Valid cases

English
open existing disk file with arbitrary name and full path,
file permissions allowing access

create directory ‘c:\foo’
copy file ‘bar’ to directory ‘c:\foo’ from test server;
permissions are ‘Everyone: full access’
execute CreateFile(‘c:foo\bar’, etc.)
expected: non-null handle returned

3

Test Harness/Architecture

Test automation is nearly always worth
the time and expense
How to automate?

Commercial harnesses
Roll-your-own
Record/replay tools
Scripted harness

Logging/Evaluation

Test Schedule
Phases of testing

Unit testing (may be done by developers)
Component testing
Integration testing
System testing

Dependencies – when are features ready?
Use of stubs and harnesses

When are tests ready?
Automation requires lead time

The long pole – how long does a test pass take?

Where The Wild Things Are:
Challenges and Pitfalls

“Everyone knows” – hallway design
“We won’t know until we get there”
“I don’t have time to write docs”
Feature creep/design “bugs”
Dependency on external groups

Test Schedule

Phases of testing
Unit testing (may be done by developers)
Component testing
Integration testing
System testing
Usability testing

What makes a good tester?

Analytical
Ask the right questions
Develop experiments to get answers

Methodical
Follow experimental procedures precisely
Document observed behaviors, their
precursors and environment

Brutally honest
You can’t argue with the data

How do test engineers fail?

Desire to “make it work”
Impartial judge, not “handyman”

Trust in opinion or expertise
Trust no one – the truth (data) is in there

Failure to follow defined test procedure
How did we get here?

Failure to document the data
Failure to believe the data

4

Testability
Can all of the feature’s code paths be exercised
through APIs, events/messages, etc.?

Unreachable internal states
Can the feature’s behavior be programmatically
verified?
Is the feature too complex to test?

Consider configurations, locales, etc.
Can the feature be tested timely with available
resources?

Long test latency = late discovery of faults

What color is your box?

Black box testing
Treats the SUT as atomic
Study the gazinta’s and gozouta’s
Best simulates the customer experience

White box testing
Examine the SUT internals
Trace data flow directly (in the debugger)
Bug report contains more detail on source of
defect
May obscure timing problems (race conditions)

Designing Good Tests

Well-defined inputs and outputs
Consider environment as inputs
Consider ‘side effects’ as outputs

Clearly defined initial conditions
Clearly described expected behavior
Specific – small granularity provides greater
precision in analysis
Test must be at least as verifiable as SUT

Types of Test Cases
Valid cases

What should work?
Invalid cases

Ariane V – data conversion error
(http://www.cs.york.ac.uk/hise/safety-critical-
archive/1996/0055.html)

Boundary conditions
Fails in September?
Null input

Error conditions
Distinct from invalid input

Manual Testing

Definition: test that requires direct human
intervention with SUT
Necessary when:

GUI is present
Behavior is premised on physical activity (e.g. card
insertion)

Advisable when:
Automation is more complex than SUT
SUT is changing rapidly (early development)

Automated Testing

Good: replaces manual testing
Better: performs tests difficult for manual
testing (e.g. timing related issues)
Best: enables other types of testing
(regression, perf, stress, lifetime)
Risks:

Time investment to write automated tests
Tests may need to change when features change

5

Types of Automation Tools:
Record/Playback

Record “proper” run through test procedure
(inputs and outputs)
Play back inputs, compare outputs with
recorded values
Advantage: requires little expertise
Disadvantage: little flexibility - easily
invalidated by product change
Disadvantage: update requires manual
involvement

Types of Automation Tools:
Scripted Record/Playback

Fundamentally same as simple
record/playback
Record of inputs/outputs during manual test
input is converted to script
Advantage: existing tests can be maintained
as programs
Disadvantage: requires more expertise
Disadvantage: fundamental changes can
ripple through MANY scripts

Types of Automation Tools:
Script Harness

Tests are programmed as modules,
then run by harness
Harness provides control and reporting
Advantage: tests can be very flexible
Disadvantage: requires considerable
expertise and abstract process

Test Corpus

Body of data that generates known
results
Can be obtained from

Real world – demonstrates customer
experience
Test generator – more deterministic

Caveats
Bias in data generation
Don’t share test corpus with developers!

Instrumented Code:
Test Hooks

Code that enables non-invasive testing
Code remains in shipping product
May be enabled through

Special API
Special argument or argument value
Registry value or environment variable

Example: Windows CE IOCTLs
Risk: silly customers….

Instrumented Code:
Diagnostic Compilers

Creates ‘instrumented’ SUT for testing
Profiling – where does the time go?
Code coverage – what code was touched?

Really evaluates testing, NOT code quality
Syntax/coding style – discover bad coding

lint, the original syntax checker
Complexity

Very esoteric, often disputed (religiously)
Example: function point counting

6

Instrumented platforms

Example: App Verifier
Supports ‘shims’ to instrument standard
system calls such as memory allocation
Tracks all activity, reports errors such as
unreclaimed allocations, multiple frees, use
of freed memory, etc.

Win32 includes ‘hooks’ for platform
instrumentation

Environment Management
Tools

Predictably simulate real-world
situations
MemHog
DiskHog
Data Channel Simulator

Test Monkeys

Generate random input, watch for crash
or hang
Typically, ‘hooks’ UI through message
queue
Primarily to catch “local minima” in
state space (logic “dead ends”)
Useless unless state at time of failure is
well preserved!

Finding and Managing Bugs

What is a bug?

Formally, a “software defect”
SUT fails to perform to spec
SUT causes something else to fail
SUT functions, but does not satisfy
usability criteria
If the SUT works to spec and someone
wants it changed, that’s a feature
request

What are the contents of a
bug report?

Repro steps – how did you cause the failure?
Observed result – what did it do?
Expected result – what should it have done?
Any collateral information: return
values/output, debugger, etc.
Environment

Test platforms must be reproducible
“It doesn’t do it on my machine”

7

Ranking bugs

Severity
Sev 1: crash, hang,
data loss
Sev 2: blocks
feature, no
workaround
Sev 3: blocks
feature, workaround
available
Sev 4: trivial (e.g.
cosmetic)

Priority
Pri 1: Fix
immediately
Pri 2: Fix before next
release outside team
Pri 3: Fix before ship
Pri 4: Fix if nothing
better to do ☺

A Bug’s Life

Regression Testing

Good: rerun the test that failed
Or write a test for what you missed

Better: rerun related tests (e.g.
component level)
Best: rerun all product tests

Automation can make this feasible!

Tracking Bugs

Raw bug count
Slope is useful predictor

Ratio by ranking
How bad are the bugs we’re finding?

Find rate vs. fix rate
One step forward, two back?

Management choices
Load balancing
Review of development quality

When can I ship?

Test coverage sufficient
Bug slope, find vs. fix lead to
convergence
Severity mix is primarily low-sev
Priority mix is primarily low-pri

Milestones

Feature complete
All features are present

Code complete
Coding is done, except for the bugs

Code Freeze
No more coding

Release Candidate
I think it’s ready to ship

It’s out the door

8

BUGs vs. Time

Feature
Complete

Code
Complete

Release
Candidate

Code
Freeze

