System Architecture

[image: image2.jpg]
Figure1.

As Figure 1 shows, our basic system architecture is a client/server architecture using the tcp/ip protocol. Basically, a client sends a packet with a string stream to the server for each user interaction. On the server side, it receives the packet and decomposes the string to perform an appropriate action. The server also keeps the information of each game such as an illustrator, list of associates, and an answer of this game and controls all games to run efficiently.

To be more productive, we decided to use an open source package called ‘QuickServer’, which is a java library for quick creation of robust multi-client TCP server applications. This is a very simple and useful source for creating multi-threaded, multi-client server applications for Java. For more detail, please visit at their web site at http://www.quickserver.org/.

Figure 2 is our basic class diagram using some QuickServer library for server/networking architecture.

As you can see, once the user interacts with the program client side, it will send information to our server. Then the server decomposes the data and performs appropriate tasks in response the client request.

Here is a sample data flow from user login to ending game.

Client (request)

1. An illustrator sends a request to log in and create a new game.
2. Some associates send requests to log in to a specific game.
3. The illustrator starts the game.
4. The illustrator keeps updating changes of the image to server

5. The associates keep requesting changes of the pen effect

6. Some associate sends a guess.
7. The illustrator replies to the answer with the associate info(IP)

8. The illustrator tells the server to end the gameServer task.
1. Create an instance of OPSClient class and OPSClientHandler .

Give the game number, and store its information in the OPSClientHandler

2. Create instances of OPSClient class and OPSClientHandler .

store each of information in these.

3. Create an instance of Game class and store 1 as illustrator and 2 as a list of associates , answer as answer and assign the game number to be the one 1 has.

Add this game to the list of games of OPSServer

4 .Get the gameID of this illustrator from Game and get a list of associates. Send the message to all the associates

5. Get the gameID of this associate from Game and retrieve the illustrator ID. Send the message to the illustrator.
6. Get the gameID of this associate from the game and get an illustrator. Send the message with the associate info (IP) to the illustrator.
7. Send the answer to the associate

8. Remove the Game for the game list in OPSServer

	Client Side
	
	Server Side
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Connector
	
	OPSServer
	
	[image: image1]TheClient
	
	
	

	String IP
	
	QuickServer server
	
	TheClient()
	
	
	

	String name
	Received data
	Port portID
	
	getSocket()
	
	
	

	Connector(String, String)
	
	Hashmap<Game> games
	
	setServer()
	
	OPSClient
	

	closeSocket()
	
	OPSServer()
	
	getServer()
	
	String name
	

	sendData()
	
	Start()
	
	setSocket()
	
	Socket socketID
	

	RecievedData()
	send data
	
	
	
	
	OPSClient(String, Socket)
	

	openSocket()
	
	
	
	
	
	SetName()
	

	
	
	
	
	
	
	getName()
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	Game
	
	
	
	
	

	
	
	OPSClientHandler illustrator
	
	
	
	
	

	
	
	List<OPSClientHandler illustrator> associates
	
	
	
	OPSClientHandler
	

	
	
	Integer ID
	
	
	
	Integer GameID
	

	
	
	String answer
	
	
	
	OPSClienthandler(Integer)
	

	
	
	Game(OPSClientHandler, List, String)
	
	
	
	setGameID()
	

	
	
	getIllustrator()
	
	TheClientHandler
	
	getGameID()
	

	
	
	addAssociate()
	
	socket SocketID
	
	
	

	
	
	removeAssociate()
	
	The ClientHandler()
	
	
	

	
	
	clearAssociates()
	
	The ClientHandler(TheClient, timeout)
	
	
	

	
	
	setID()
	
	setSocket()
	
	Relationship:
	

	
	
	getID()
	
	setClientMsg(string)
	
	
	

	
	
	setAnswer()
	
	
	
	Implements
	

	
	
	GetAsnwer()
	
	
	
	
	

	
	
	setIllustrator(0
	
	
	
	Extends
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Has
	

	
	
	Interface-ClientCommandHandler
	
	GameCommandHandler
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	GameCommandHanlder()
	
	
	

	
	
	
	
	getConnected()
	
	
	

	
	
	Red Class---QuickServer library
	
	closingConnection()
	
	
	

	
	
	*list only useful attributes and methods
	
	sendImageChange()
	
	
	

	
	
	
	
	sendNewEffect()
	
	
	

	
	
	
	
	getLoginInfo()
	
	
	

	
	
	
	
	sendClueFromAssociate()
	
	
	

	
	
	
	
	replyAnswerFromIllustrator()
	
	
	

	
	
	
	
	closeGame()
	
	
	

	
	
	
	
	StartGame()
	
	
	

	
	
	Figure 2.
	
	
	
	
	

	
	
	
	
	
	
	
	

