LCO Proposal

CSE403 Project1

Group Members:

 Calvin Chin

 Mikiko Jama

What is Openspace?

Openspace is a collaborative art game in which players work together to create art in a limited timeframe with a small and randomized set of strange artistic tools. The game moves in rounds, as one player acts as the ‘illustrator’, and the other players as ‘assistants’ are given the role of selecting the tools the illustrator must use, such as a pen that leaves a small trail of trees, a match which burns the ‘canvas’ upon which the art is being drawn, and a tool that makes the background of the image shift colors. At the beginning of the round, a random subject is chosen for the illustrator, such as “the Mona Lisa” or “Mt. Rainier”, and a timer will begin indicating how long the illustrator has until they can no longer draw. While the subjects are random, they can be themed according to the user such as “famous works of art”. Only the illustrator knows what the subject is, and must attempt to convey this to the assistants. The illustrator begins with a simple black pen as their tool, but this tool has a limited ‘inkwell’ that must be recharged by dipping into an onscreen inkwell. Dipping into the inkwell provides the other players with special ‘orbs’ representing new tools the illustrator must use when an orb is activated. These players then attempt to understand what the illustrator is trying to illustrator and provide them with the best brush available in the pool, even if those brushes happen to be ‘fish’ ‘trees’ and ‘rainbow’ for example. After this mini-round, the assistants attempt to guess what the subject was before the real subject is revealed to them. Each player will act as an illustrator for a random topic, and after all players have gone, final scoring occurs where a winner is determined for the round, based on whose concept is the most visually appealing, or downright amusing. The players must vote for the best piece of art that is not their own, and the artwork that scores the most votes is declared highly pretentious and hung up in a dusty art gallery for all eternity.

Who is this for?

This product is aimed at people that enjoy playing light-hearted games with a creative element. Together, players can create bizarre takes on art, and in the process learn a thing or two about famous artwork or artists. The game should be simple enough for children to learn to play, and the educational aspect is present but not forced.

To the best of our knowledge, no other product shares fully in the concept that Openspace represents. It has many aspects inspired by applications such as Pictochat, iSketch, and Kidpix mashed together into a semi-competitive computer game.

System Requirements

Ultimately, Openspace is a collaborative drawing game that feels hectic but not chaotic. The game is not a serious time investment, definitely falling on to the light end of the gaming spectrum, as a quick round or two in a lunch break or so is certainly possible. The players should feel like they are competing, but they should also feel that every piece of art that is made is a collaborative effort derived from the ever changing tools, and the quick reactions and adaptability of the illustrators. The game is not bounded by language, and there is no support for text chat, so the players must learn to communicate with each other via the artistic tools given to them.

The graphical interface that a client sees as an illustrator is minimalist, consisting of a large open canvas, ‘pen’ controlled by the mouse, an inkwell in the bottom left corner that can be clicked and held on to slurp up more ink, and a bar representing the remaining ink in a pen. A small box also indicates their current subject, the time left, and what the current activated orb is.

As for the interface when a client acts as an assistant, it is also quite similarly minimalist, consisting of an open canvas upon which they can view the current illustrator’s desperate attempts, and a small number of orbs at the bottom of the screen that the player can put into play at any time by clicking on them. A box containing current subject, time left, and current activated orb also exists on this screen.

System and Software Architecture

A client/server architecture supports all that Openspace needs to do. No extraneous databases or esoteric requirements should be necessary beyond a custom server application and a client application that interact with each other to support the real time drawing action that players crave.

The server moderates the action of the game, determining who the current illustrators and assistants are, what mode the game is currently in, and updating all the clients as to changes to the canvas or the types of orbs available to them. When a client draws on their screen, only the command changes are sent to the server, and the server in turn relays this information to the other clients. This way, only changes to the canvas need to be sent instead of having to constantly re-upload a new image. The server will maintain a master ‘copy’ of what it believes to be the true image, and sporadically send out a refreshed image to ensure that clients are not desynched.

The client represents a graphical/audio interface provided to the user, in addition to an aspect that maintains a constant interaction with the server in exchanging player commands. The client may in fact be more difficult than the server, as that graphics and sounds must be created for the client, and rendered appropriately. No such requirement exists for the server which merely acts as a broker between clients for maintaining the game. The server does not need to know about the graphics and sound resources the clients possess.

As for implementation, Openspace unfortunately cannot rely upon many third party libraries or pre-existing code. Most of it must be written from scratch, including the server, the client, and potentially the graphical effects code to provide the graphical effects a pen can place upon a canvas.

Life Cycle Plan

For a project of this type, a hybrid between the design to schedule and evolutionary prototyping model seems best. A working prototype will help immensely in determining if the game is not only a workable concept, but fun. Iterating through builds as new graphical effects or new optimized syncing code are added will not help us without integrating customer (game player) feedback will make the game fun for as many people as possible. This project also has a definite timeframe in which it needs to be completed, and at the least, implementation of key features of the game and then continual refinement will help to ensure that we are not left with an unusable mess.

The large components in the game needed development can be broken three areas of responsibility, but there is significant overlap in all cases:

-Graphical Effects – Examples: Creating a burn effect tool or a way to make it seem like a user can paint with watercolors on the computer screen.

-Server/Client – Significant resources must be dedicated to writing custom server and client software that interact with each other for the sole purpose of this game.

-Graphical/Audio – Quite a bit of pre-existing art and sounds must be provided for the game: sprites for things like tree stamps, icons for the inkwell, orbs, and the pen, sounds for clicking or notification sounds, music to keep the game from feeling dry, etc.

High Priority Features:

-Client/server support for real-time simultaneous illustration.

-Basic game modes of illustrator and assistant, scoring rounds and random subject generation.

Low Priority Features:

-A multitude of ‘orbs’ with different effects. The more we have, the more interesting the game gets, but it is not essential.

-Music/sound. It’s nice to provide users with a fun game environment that isn’t so dry, but again not essential.

Example Development Timeline

Software Conceptual Design and Requirement Analysis
Architectural Design

Code

1st Prototype-High Priority Features (containing basic client/server code, and a way to draw on your screen and have it show up on another client’s screen in real time)
Test
Release

Feedback

Conceptual Reevaluation
Code

Test
2nd Prototype- Lower Priority Features (containing basic game round information, and simple tools such as a color pen, color changing orbs, scoring ability)
Feedback from players

Refinement and Tests
… (repeats prototype cycle (code, test) with more and more features added)

Release

The stakeholders involved with such a project would be us the developers and any game players who find the idea appealing. With this sort of timeline at the least, it is more likely we will have a functioning game, if not particularly refined by the end of the quarter. A full team of eight would provide the best sort of development for this game, as that with a team of four too many responsibilities may have to be divided amongst too few.

Nonetheless, assuming we have a team of four, the roles each person must play will be fluid as the project develops. A project manager must not only schedule and plan for the development of Openspace, but must participate in the development of the three areas of responsibility. The first important area of responsibility lies with the client/server architecture, and at least two of the members (or potentially all members) must work on this portion as that without this there is no remotely collaborative element. The development of brush effects is also important, but only one person needs to research this aspect until the client and server framework is implemented. At that point more team members can dedicate themselves to this task. Last of all, the development of graphical icons, sounds and music for the game must be created. This may not necessarily be the ‘easiest’ aspect of the development, but it represents polish on top of the core product.
Feasibility Rationale

Risks:

- Custom Server/Client architecture is too difficult to implement in the

timeframe given.

- Many graphical effects provided in game may be too difficult to

implement.

- Game concept simply does not resonate with any game players

- Feedback may indicate issues with core components of Openspace, but

we will not have time to go back and redesign them.

Overall Feasibility:

Openspace will certainly not be an easy project, but it will provide practice with many aspects of software development, including realtime client/server architecture, graphical effects design, UI development, graphical and audio resource development, and the integration of all these components to create something that has only one purpose, and that is to provide entertainment and a creative outlet for game players.

