Jared Krinke

Tony Gibbon


Multiplayer Notepad

Operational Concepts

Multiplayer Notepad is a collaborative text editing environment. Multiple users can simultaneously edit text files while keeping the file in a consistent state. This is useful in situations where several people must work on the same document and be constantly updated about other editors’ actions. For example, this could be used to maintain source code and documentation in a software project with many developers.
System Requirements

Multiplayer Notepad is a text editor that supports multiple users.

· Each user has his own color cursor so that other users can see where their collaborators are working.
· Changes made do not interrupt other users’ progress because the cursor is kept in the same relative part of the document regardless of changes earlier and later in the document.
· The workspace can consist of multiple documents through which individuals can move freely while still keeping track of what others are doing.
· Users are able to commit their particular set of modifications in order for them to be saved into the master copy of the document. While editing, each user can selectively ignore changes made by others in order to prevent conflicts as well as keep the document in a consistent state (for example, keeping source code compilable).
The mock-up below shows the key points of the interface:


[image: image2.png][B unted notepad S 81

Fle_Edt_Fomat Vew Heb
flel.tut[file2.0xt] other.tt | =

T'm Bill and I'm typing|
Tm also typing|

I'm trying toltype bul-I'm being a jerk and deleting his text





System and Software Architecture

Multiplayer Notepad will use a client-server organization. The server maintains the actual files and keeps track of changes. Clients inform the server of changes by the user and receive feedback about everyone’s actions. The project will be implemented in Java using the Java class libraries for networking and Swing for the user interface. The Eclipse IDE will be used for debugging purposes; networking problems can be debugged using tcpdump.
Lifecycle Plan
Approximately four developers who are experienced in using Java will be needed to complete this project in one quarter. The project will be broken down into subprojects so that very complex features are only implemented if there is enough time. The main subprojects in order of importance are as follows:
· Client/server architecture where clients can log into a server and messages can be sent both directions.
· Graphical representation of an immutable file with user cursors so that editors can see where their peers are looking within a file.
· Simultaneous editing by all connected clients without disrupting each individual’s work.
· Support committing a set of changes at once. Additionally, this would allow the user to ignore uncommitted changes from specific users in order to maintain a consistent state.

Feasibility Rationale

The initial goal of a networked text editor (without change sets and revision control) is very straightforward and provided that the text editing component of Java can be modified the project should be fairly simple. If a text component must be written from scratch, the goals are still achievable but the component won’t work like a native editor (such as Notepad) for mouse manipulation, cutting and pasting, etc. By breaking the project into milestones, a workable product should be possible even if the more advanced features must be left out.
All users’ cursors are visible





Multiple files may be edited





The cursors stay in the same relative position regardless of other editors’ actions








[image: image1]