Team dynamics

CSE 403



Team pros and cons

* Benefits
— Attack bigger problems in a short period of time
— Utilize the collective experience of everyone

e Risks
— Communication and coordination issues
— Groupthink: diffusion of responsibility; going along
— Working by inertia; not planning ahead
— Conflict or mistrust between team members



Communication: powerful, costly!

e Communication requirements increase with
increasing numbers of people

e Everybody to everybody: quadratic cost

e Every attempt to communicate is a chance to
mis-communicate

But not communicating will guarantee mis-
communicating



Team structures

e Tricky balance among

— progress on the project/product
— expertise and knowledge
— communication needs

e “Ateam is a set of people with complementary
skills who are committed to a common purpose,
performance goals, and approach for which they
hold themselves mutually accountable.” -«atzenbach and

Smith



Common SW team responsibilities

Project management
~unctional management

Developers: programmers, testers, integrators

_ead developer/architect (“tech lead”)

These could be all different team members, or
some members could span multiple roles.

Key: Identify and stress roles and responsibilities



Questions when organizing your team

How do you decide who should be project manager?
— What's the difference between project manager and tech lead?

How do you divide your team into subgroups? Who will work on
what, and with whom?

How will we make decisions about our project?

How will everyone communicate and stay in sync about important
decisions and issues?

What will we do if someone is not doing their share?
— How can we motivate team members to prevent this?



Issues affecting team success

Presence of a shared mission and goals
Motivation and commitment of team members

Experience level
— and presence of experienced members

Team size
— and the need for bounded yet sufficient communication

Team organization
— and results-driven structure

Reward structure within the team
— incentives, enjoyment, empowerment (ownership, autonomy)



Team structure models

Dominion model

— Pros
e clear chain of responsibility
e people are used to it
— Cons:
* single point of failure at the commander
* |ess or no sense of ownership by everyone

Communion model

— Pros
e a community of leaders, each in his/her own domain
* inherent sense of ownership

— Cons
e people aren't used to it (and this scares them)

O Q



Team leadership

e Who makes the important product-wide
decisions in your team?
— One person?
— All, by unanimous consent?
— Other options?...

— Is this an unspoken or an explicit agreement
among team members?



Organizing around functionality

Pragmatic Programmer tip:
"Organize around functionality, not job functions."

What are some benefits of organizing teams around
functionality vs. around job functions/titles?

Who will do the ...

— scheduling? development? testing? documentation
(spec, design, write-ups, presentations)? build/release
preparation? inter-team communication? customer
communication?



Kinds of teams

problem-resolution: a focused attack on specific bugs, problems,
issues

creativity: coming up with and exploring new ideas
tactical-execution: carries out a defined plan

Some team models
— business: tech lead and a bunch of equal devs
— chief programmer / surgical: lead dev does most of work
— skunkworks: turn the devs loose
— feature
— search-and-rescue: focused on a specific problem
— SWAT: skilled with a particular advanced tool(s)

— Professional Athletic: carefully selected people w/ very specialized
roles

— Theater: "director" assigns roles to others



Surgical/Chief Programmer Team
[Baker, Mills, Brooks]

Chief: all key decisions

Copilot: chief’s assistant

Administrator: manages people, hardware, resources

Editor: edits chief’s documentation

Program clerk: keeps all project records

Toolsmith: builds programming tools for chief




Microsoft’s team structure

[microsoft.com]

* Program Manager. Leads the technical side of a
product development team, managing and
defining the functional specifications and defining
how the product will work.

e Software Design Engineer. Codes and designs
new software, often collaborating as a member
of a software development team to create and
build products.

e Software Test Engineer. Tests and critiques
software to assure quality and identify potential
improvement opportunities and projects.



Toshiba Software Factory [v. matsumoto]

e Late 1970’s structure for 2,300 software developers
producing real-time industrial application software
systems (such as traffic control, factory automation,
etc.)

e Unit Workload Order Sheets (UWOQOS) precisely define a
software component to be built

e Assigned by project management to developers based
on scope/size/skills needed

e Completed UWOS fed back into management system
e Highly measured to allow for process improvement



Common factors in good teams

Clear roles and responsibilities
— Each person knows and is accountable for their work

Monitor individual performance
— Who is doing what, are we getting the work done?

Effective communication system
— Available, credible, tracking of issues, decisions
— Problems aren't allowed to fester ("boiled frogs")

Fact based decisions
— Focus on the facts, not the politics, personalities, ...



Results-driven structure

Clear roles and responsibilities
— Each person knows and is accountable for their work

Monitor individual performance, hold people
accountable

— Who is doing what, are we getting the work done?
Effective communication system
— Available, credible, tracking of issues, decisions

Fact based decisions
— Focus on the facts, not the politics, personalities, ...



Motivation

e What motivates you?
— Achievement
— Recognition
— Advancement
— Salary
— Possibility for growth

— Interpersonal relationships
e Subordinate
e Superior
* Peer

— Status

— Technical supervision
opportunities

Company policies
Work itself

Work conditions
Personal life

Job security
Responsibility
Competition
Time pressure
Tangible goals
Social responsibility
Other?



De-motivators

e What takes away your motivation?

Micro-management or no management
Lack of ownership

Lack of effective reward structure
e Including lack of simple appreciation for job well done

Excessive pressure and resulting "burnout”
Allowing "broken windows" to persist
Lack of focus in the overall direction

Productivity barriers
e Asking too much; not allowing sufficient learning time; using the wrong tools

Too little challenge
Work not aligned with personal interests and goals
Poor communication inside the team



