Reasoning About Code

Determine what facts are true during execution

x > 0
for all nodes n: n.next.previous == n
array a is sorted
x + y == z
if x != null, then x.a > x.b

Applications:

Ensure code is correct (via reasoning or testing) Understand why code is incorrect You know what is true before running the code What is true after running the code?

Given a precondition, what is the postcondition?

Applications:

Rep invariant holds before running code Does it still hold after running code?

Example:

// precondition: x is even x = x + 3; y = 2x; x = 5; // postcondition: ?? You know what you want to be true after running the code What must be true beforehand in order to ensure that?

Given a postcondition, what is the corresponding precondition?

Application:

(Re-)establish rep invariant at method exit: what <u>requires</u>? Reproduce a bug: what must the input have been?

Example:

// precondition: ?? x = x + 3; y = 2x; x = 5; // postcondition: y > x

How did you (informally) compute this?

Forward reasoning is more intuitive for most people

Helps you understand what will happen (simulates the code)Introduces facts that may be irrelevant to goalSet of current facts may get largeTakes longer to realize that the task is hopeless

Backward reasoning is usually more helpful

Helps you understand what should happen Given a specific goal, indicates how to achieve it Given an error, gives a test case that exposes it

Goal: Convert assertions about programs into logic

General plan

Eliminate code a statement at a time Rely on knowledge of logic and type

Rely on knowledge of logic and types

There is a (forward and backward) rule for each statement in the programming language

Loops have no rule: you have to guess a loop invariant

Jargon: P {code} Q

P and Q are logical statements (about program values) **code** is Java code

"P {code} Q" means "if P is true and you execute code, then Q is true afterward"

Is this notation good for forward or for backward reasoning?

Forward reasoning example

```
assert x \ge 0;
i = x;
   //x \ge 0 & i = x
z = 0;
   //x \ge 0 & i = x & z = 0
while (i != 0) {
                    \leftarrow What property holds here?
  z = z + 1;
  i = i - 1;
                    \Leftarrow What property holds here?
}
   //x \ge 0 & i = 0 & z = x
assert x == z;
```

Technique for backward reasoning:

Compute the weakest precondition ("wp")

- There is a wp rule for each statement in the programming language
- Weakest precondition yields strongest specification for the computation (analogous to function specifications)

// precondition: ??
x = e;
// postcondition: Q

Precondition = Q with all (free) occurrences of x replaced by e

Example:

// assert: ??
x = x + 1;
// assert x > 0

Precondition = (x+1) > 0

We write this as wp for "weakest precondition" wp("x=e;", Q) = Q with x replaced by e

// precondition: ??
x = foo();
// postcondition: Q

- If the method has no side effects: just like ordinary assignment
- **If it has side effects: an assignment to every var in <u>modifies</u> Use the method specification to determine the new value**

Composition (statement sequences; blocks)

// precondition: ??

- S1; // some statement
- S2; // another statement
- // postcondition: Q

Work from back to front

Postcondition = wp("s1; s2;", Q) = wp("s1;", wp("s2;", Q))

Example:

If statements

// precondition: ?? if (b) S1 else S2 // postcondition: Q Essentially case analysis wp("if (b) S1 else S2", Q) = ($b \Rightarrow wp("S1", Q)$ $\land \neg b \Rightarrow wp("S2", Q)$)

```
// precondition: ??
if (x == 0) {
    x = x + 1;
} else {
    x = (x/x);
}
// postcondition: x ≥ 0
```

Precondition

$$= wp("if (x==0) \{x = x+1; \} else \{x = x/x\}", x \ge 0) \\ = (x = 0 \Rightarrow wp("x = x+1", x \ge 0) \\ & x \ne 0 \Rightarrow wp("x = x/x", x \ge 0)) \\ = (x = 0 \Rightarrow x + 1 \ge 0) & (x \ne 0 \Rightarrow x/x \ge 0) \\ = 1 \ge 0 & 1 \ge 0 \\ = true$$

A loop represents an unknown number of paths

Case analysis is problematic Recursion presents the same issue

Cannot enumerate all paths

That is what makes testing and reasoning hard

```
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

1) Pre-assertion guarantees that $x \ge y$

2) Every time through loop

- $x \ge y$ holds and if body is entered, x > y
- y is incremented by 1
- x is unchanged

Therefore, y is closer to x (but $x \ge y$ still holds)

- 3) Since there are only a finite number of integers between x and y, y will eventually equal x
- 4) Execution exits the loop as soon as x = y

We just made an inductive argument

Inducting over the number of iterations

Computation induction

Show that conjecture holds if zero iterations Show that it holds after *n*+1 iterations (assuming that it holds after *n* iterations)

Two things to prove

Some property is preserved (known as "partial correctness") Loop invariant is preserved by each iteration The loop completes (known as "termination") The "decrementing function" is reduced by each iteration // assert P
while (b) S;
// assert Q
Equivalently: P {while (b) S;} Q

Find an invariant, LI, such that

1) $P \Rightarrow LI$ (true at start of first iteration)2) $LI \& b \{S\} LI$ (preserved by each iteration)3) ($LI \& \neg b$) $\Rightarrow Q$ (implies the desired post-condition)

It is sufficient to know that if loop terminates, Q will hold

Finding the invariant is the key to reasoning about loops

Inductive assertions is a complete method of proof:

If a loop satisfies pre/post conditions, then there exists an invariant sufficient to prove it

Loop invariant for the example

So, what is a suitable invariant?

What makes the loop work?

 $LI = x \ge y$

1)
$$x \ge 0$$
 & $y = 0 \Rightarrow LI$
2) LI & $x \ne y \{y = y+1;\}$ LI
3) (LI & $\neg(x \ne y)) \Rightarrow x = y$

We have not established that the loop terminates

Suppose that the loop always reduces some variable's value. Does the loop terminate if the variable is a

- Natural number?
- Integer?
- Non-negative real number?
- Boolean?
- ArrayList?

The loop terminates if the variable values are (a subset of) a well-ordered set

- Ordered set
- Every non-empty subset has least element

Decrementing function D(X)

Maps state (program variables) to some well-ordered set This greatly simplifies reasoning about termination

Consider: while (b) S;

We seek D(X), where X is the state, such that

- 1. An execution of the loop reduces the function's value: LI & b {S} $D(X_{post}) < D(X_{pre})$
- 2. If the function's value is minimal, the loop terminates: (LI & D(X) = minVal) $\Rightarrow \neg b$

```
// assert x ≥ 0 & y = 0
// Loop invariant: x ≥ y
// Loop decrements: (x-y)
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- Is "x-y" a good decrementing function?
- 1. Does the loop reduce the decrementing function's value? // assert (y ≠ x); let d_{pre} = (x-y) y = y + 1; // assert (x_{post} - y_{post}) < d_{pre}
- 2. If the function has minimum value, does the loop exit? $(x \ge y \& x - y = 0) \Rightarrow (x = y)$

Choosing loop invariants

For straight-line code, the wp (weakest precondition) function gives us the appropriate property

For loops, you have to guess:

The loop invariant The decrementing function

Then, use reasoning techniques to prove the goal property

If the proof doesn't work:

Maybe you chose a bad invariant or decrementing functionChoose another and try againMaybe the loop is incorrectFix the code

Automatically choosing loop invariants is a research topic

I don't routinely write

Loop invariants and decrementing functions

I do write them when I am unsure about a loop

When I have evidence that a loop is not working

- Add invariant and decrementing function if missing Write code to check them Understand why the code doesn't work
- Reason to ensure that no similar bugs remain