
2/2/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

Design is not just what it looks like and feels like. 

Design is how it works. –Steve Jobs

CSE403 Wi09 2

Chunking

• Advanced chess players are in part superior because 

they don‟t see each piece individually

– Instead, they chunk groups of them together

– This reduces the search space they need to 

assess in deciding on a move

• This notion of chunking happens in almost every 

human endeavor

• Such chunking can lead to the use of idioms

High Level Languages

• High level programming 

languages can be 

viewed as providing 

idioms that have proven 

generally useful

• These high level 

constructs are 

sometimes more, 

constraining the ability 

to see the pieces

• Structures

– Grouping together 

heterogeneous elements

• Structured loops

– Grouping together 

disciplined uses of 

comparisons and 

branches

• Procedure call

– Saving & restoring 

registers, jumps, …

CSE403 Wi09 3 CSE403 Wi09 4

Design patterns

• "a „well-proven generic scheme‟ for solving a 

recurring design problem” 

• Idioms intended to be “simple and elegant solutions 

to specific problems in object-oriented software 

design”

• A key to design patterns is that they are drawn from 

examples in existing systems

– Not proposed solutions to possible problems, but 

real solutions to real problems

CSE403 Wi09 5

Language independent

• They are language-independent

– Although some language support is starting to 

exist in some cases

• Again, there is an analogy to high-level control 

structures 

– Knuth‟s 1974 article (“Structured Programming 

with go to Statements”) shows that this is not a 

language issue alone

CSE403 Wi09 6

Low-level

• Patterns are a collection of “mini-architectures” that 

combine structure and behavior

• They are closely linked to the programming level

– Information hiding is a (higher-level) design notion, 

which is often supported in programming 

languages

– Layering has little direct link to the programming 

level



2/2/2009

2

Example: flyweight pattern

column

rowrowrow

a tnerapp

CSE403 Wi09 7

• What happens when you try to represent lots of small 

elements as full-fledged objects? 

• It‟s often too expensive

• And it‟s pretty common

An alternative approach

column

rowrowrow

a tnerapp

a mlkjihgfedcb

n zyxwvutsrqpo

CSE403 Wi09 8

• Use sharing to support many fine-grained objects 

efficiently

– Fixed domain of objects

– Maybe other

constraints

CSE403 Wi09 9

Flyweight structure

GetFlyweight(key)

FlyweightFactory

Operation(extrinsicState)

Flyweight

flyweights

Client

Operation(extrinsicState)

intrinsicState

ConcreteFlyweight

Operation(extrinsicState)

allState

UnsharedConcreteFlyweight

CSE403 Wi09 10

Participants

• Flyweight (glyph in text example)

– Interface through which flyweights can receive and 

act on extrinsic state

• ConcreteFlyweight (character)

– Implements flyweight interface, shareable, only 

intrinsic state (independent of context)

• UnsharedConcreteFlyweight (row, column)

• FlyweightFactory

– Creates and manages flyweight objects

CSE403 Wi09 11

Sample code

class Glyph {

public:

virtual ~Glyph();virtual

void Draw(…);

virtual void SetFont(…);

…

}

class Character : public Glyph {

Character(char);

virtual void Draw(…);

private:

char _charcode;

};

• The code itself is in 

the domain (glyphs, 

rows, etc.)

• But it‟s structured 

based on the pattern

• The client interacts 

with Glyph, 
Character

CSE403 Wi09 12

A little more code

Character* GlyphFactory::CreateCharacter(char c) 

{

if (!_character[c]) {

_character[c] = new Character();

}

return _character[c];

}

• Explicit code for each of the elements in the flyweight 
structure



2/2/2009

3

CSE403 Wi09 13

Defining a pattern

• Name and 

classification

• Intent

• Also known as

• Motivation

• Applicability

• Structure

• Participants

• Collaborations

• Consequences

• Implementation

• Sample code

• Known uses

• Related patterns

Classification of patterns

• Creational

– Abstract factory, builder, 

factory method, prototype, 

singleton

• Structural

– Adapter, bridge, composite, 

decorator, façade, flyweight, 

proxy

• Behavioral

– Chain of responsibility, 

command, interpreter, 

iterator, mediator, memento, 

observer, state, strategy, 

template method, visitor

• Original GoF patterns

CSE403 Wi09 14

CSE403 Wi09 15

An historical aside

• The Gang of Four loosely based their initial work on 

that of architect Christopher Alexander

– Not a systems or software architect, but an 

architecture architect (with planning, too)

– The Timeless Way trilogy

• The Timeless Way of Building (1979), A Pattern 

Language: Towns, Buildings, Construction (1977), The 

Oregon Experiment (1975)

• Not surprisingly, a focus on idiomatic solutions to 

common design problems

CSE403 Wi09 16

A little more

• Alexander and his influence on CS
– www.math.utsa.edu/sphere/salingar/Chris.text.html

• Too much can be (and is) made of the connection to 

Alexander

– In particular, Alexander takes the “big” view of 

architecture and patterns

– In software, it is important but still the “little” view

CSE403 Wi09 17

An enlightening experience

• I had an experience with two of the Gang of Four 

• They sat down with Griswold and me to show how to 

use patterns to (re)design a software design we had 

published

– The rate of communication between these two 

was unbelievable 

– Much of it was understandable to us without 

training (a good sign for a learning curve) 

CSE403 Wi09 18

The real thing

• Design patterns are not a silver bullet 

• But they are impressive, important and worthy of 

attention 

– I think that some of the patterns have and more 

will become part and parcel of designers‟ 

vocabularies 

– This will improve communication and over time 

improve the designs we produce 

– The relatively disciplined structure of the pattern 

descriptions may be a plus



2/2/2009

4

CSE403 Wi09 19

Final reminder

• Design patterns are highly unlikely to be on your 

mind now

• They are lower-level than the design you‟re thinking 

about at this stage

• They are probably elements that each of you, even 

within a team, can choose to use (or not) on an 

individual basis

• The idea is easy, but there is a learning curve

Questions?

CSE403 Wi09 20


