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Software quality assurance

• What are we assuring?

• Why are we assuring it?

• How do we assure it?

• How do we know we have assured it?
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What are we assuring?

• Validation: building right system?

• Verification: building system right?

• Presence of good properties?

• Absence of bad properties?

• Identifying errors?

• Confidence in the absence of errors?

• Robust?  Safe?  Secure?  Available?  Reliable? 

Understandable? Modifiable?  Cost-effective?  Usable? …
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The answer 

matters

Why are we assuring it?

• Business reasons

• Ethical reasons

• Professional reasons

• Personal satisfaction

• Legal reasons

• Social reasons

• Economic reasons

• …
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The answer 

matters

How do we assure it?
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Product

PeopleProcess

How do we know we have assured it?

• Depends on ―it‖

• Depends on what we mean by ―assurance‖

• …
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Our focus

• Primarily on the product – testing, verification, etc.

– And primarily on ―built the system right?‖

• Some on the process – walkthroughs, code reviews, 

etc.
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Foundation: program correctness

• Relatively few programs are proven correct

– Hard, expensive, and usually uni-dimensional

• The language and ―way of thinking‖ is important, and 

many recent testing and anomaly checking 

technologies are heavily reliant on this foundation
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Basics of program correctness

• Make precise the meaning of programs

• In a logic, write down (this is often called the specification)

– the effect of the computation that the program is required to 
perform (the postcondition Q)

– any constraints on the input environment to allow this 
computation (the precondition P)

• Associate precise (logical) meaning to each construct in the 
programming language (this is done per-language, not per-
program)

• Reason (usually backwards) that the logical conditions are 
satisfied by the program S

• A Hoare triple is a predicate {P}S{Q} that is true whenever P
holds and the execution of S guarantees that Q holds 
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Examples

• {true}

y := x * x;

{y >= 0}

• {x <> 0}

y := x * x;

{y > 0}

• {x > 0}

x := x + 1;

{x > 1}

UW CSE 403 11

More examples

• {x = k}

if (x < 0) x := -x endif;

{    ?    }

• {    ?    }

x := 3;

{ x = 8 }
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Strongest postconditions
[example from Aldrich and perhaps from Leino]

The following are all valid Hoare triples

• {x = 5} x := x * 2 { true }

• {x = 5} x := x * 2 { x > 0 }

• {x = 5} x := x * 2 { x = 10 || x = 5 }

• {x = 5} x := x * 2 { x = 10 }

• Which is the most useful, interesting, valuable?  

Why?
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Weakest preconditions
[example from Aldrich and perhaps from Leino]

Here are a number of valid Hoare Triples

• {x = 5 && y = 10} z := x / y { z < 1 }

• {x < y && y > 0} z := x / y { z < 1 }

• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• The last one is the most useful because it allows us to invoke 

the program in the most general condition

• It is called the weakest precondition, wp(S,Q) of S with respect 

to Q

– If {P} S {Q} and for all P’ such that P’ => P, then P is 

wp(S,Q)

UW CSE 403 14

Sequential execution

• What if there are multiple 

statements

– {P} S1;S2 {Q}

• We create an intermediate 

assertion

– {P} S1 {A} S2 {Q}

• We reason (usually) 

backwards to prove the 

Hoare triples

• A formalization of this 

approach essential defines 

the ; operator in most 

programming languages

– {x > 0}

y := x*2;

z := y/2

{z > 0}

– {x > 0}

y := x*2;

{y > 0}

z := y/2

{z > 0}
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Conditional execution

• {P}

if C then S1

else S2

endif

{Q}

• Must consider both 

branches

• Ex: compute the 

maximum of two 
variables x and y

{true}

if x >= y then

max := x

else

max := y

fi

{(max >= x max >= y)}
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Hoare logic rule: conditional

{P} if C then S1 else S2 {Q}

{P C}S1{Q} {P C}S2{Q}
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Be careful!

• {true}

max := abs(x)+abs(y);

{max >= x max >= y}

• This predicate holds, but we don’t ―want‖ it to

– The postcondition is written in a way that permits 
satisfying programs that don’t compute the 
maximum 

– In essence, every specification is satisfied by an 
infinite number of programs and vice versa

• The ―right‖ postcondition is

– {(max = x max = y)

(max >= x max >= y)}
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Assignment statements

• We’ve been highly informal in dealing with 

assignment statements

• What does the statement x := E mean?

– {Q(E)} x := E {Q(x)}

– If we knew something to be true about E before 

the assignment, then we know it to be true about x

after the assignment (assuming no side-effects)
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Examples

{y > 0}

x := y

{x > 0}

{x > 0} [Q(E) x + 1 > 1 x > 0 ]

x := x + 1;

{x > 1} [Q(x) x > 1]
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More examples

{    ?    }

x := y + 5

{x > 0}

{x = A y = B }

t := x;

x := y;

y := t

{x = B y = A }
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Loops

• {P} while B do S {Q}

• We can try to unroll this into

– {P B} S {Q} 

{P B} S {Q B} 

{P B} S {Q B} S {Q B} …

• But we don’t know how far to unroll, since we don’t know how many 

times the loop can execute

• The most common approach to this is to find a loop invariant, which is a 

predicate that

– is true each time the loop head is reached (on entry and after each 

iteration) 

– and helps us prove the postcondition of the loop

– It approximates the fixed point of the loop
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Loop invariant for {P} while B do S {Q}

• Find I such that
– P I -Invariant is correct on

entry

– {B I} S {I} –Invariant is maintained

– { B I} Q –Loop termination proves Q

• Example

{n > 0}
x := a[1];
i := 2;
while i <= n do
if a[i] > x then x := a[i];
i := i + 1;

end;
{x = max(a[1],…,a[n])
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Termination

• Proofs with loop invariants do not guarantee that the loop 

terminates, only that it does produce the proper postcondition if

it terminates – this is called weak correctness

• A Hoare triple for which termination has been proven is strongly 

correct

• Proofs of termination are usually performed separately from 

proofs of correctness, and they are usually performed through 

well-founded sets 

– In this example it’s easy, since i is bounded by n, and i

increases at each iteration

• Historically, the interest has been in proving that a program 

does terminate: but many important programs now are intended 

not to terminate
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Correctness of data structures

• Primarily due to Hoare; 
figures from Wulf et al.

• Prove the specifications on 
the abstract operations (e.g., 
Pusha)

• Prove the specifications on 
the concrete operations 
(e.g., Pushc)

• Prove the relation between 
abstract and concrete 
operations (e.g., R), the 
representation mapping

<x
1
,x

2
> <x,x

1
,x

2
>

Push
a
(S,x)

S.sp = 2

S.v =

[x
2,

x
1
,?,?,...]

S.sp = 3

S.v =

[x
2
,x

1
,x,?,...]

Push
c
(S,x)

R R

Example

{ full(Sa)} { full(R(Sc))} 

Pusha(Sa,x)      Pushc(Sc,x)

{Sa=<x>||S’a} {R(Sc) = <x>||

R(S’c)}
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So what?

• It lays a foundation for

– Thinking about programs more precisely

– Applying techniques like these in limited, critical 

situations

– Development of some modern design, 

specification and analysis approaches that seem 

to have value in more situations

– Basis for many testing and analysis approaches
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Testing vs. proving

• Dynamic

• Builds confidence

– Can only show the 

presence of bugs, 

not their absence

• Used widely in 

practice

• Costly

• Static

• It’s a proof

– Proofs are human 

processes that aren’t 

foolproof

• Applicability is 

practically limited

• Extremely costly
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Brief (and informal) aside

• Dynamic techniques are unattractive because they 

are ―unsound‖ — you can  believe something is true 

when it’s not

• Static techniques are unattractive because they are 

often very costly — and they may lead you to confuse 

the checked property for other desirable properties

• The truth is that they should be considered to be 

complementary, not competitive
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Testing

• In any case, testing is by far the dominant approach 

to assessing software products
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Two kinds of improvements

• One goal is to improve testing to increase the quality 

of the software that is produced

• Another goal is to reduce the costs of testing while 

maintaining the current quality of the software that is 

produced
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Terminology

• A failure occurs when a program doesn't satisfy its 

specification

• A fault occurs when a program's internal state is 

inconsistent with what is expected (usually an 

informal notion)

• A defect is the code that leads to a fault (and perhaps 

to a failure)

• An error is the mistake the programmer made in 

creating the defect
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More terminology

• A test case is a specific set of data that exercises the 

program

• A test suite is a set of test cases

• Old terminology

– A test case (suite) fails if it demonstrates a 

problem

• New terminology

– A test case (suite) succeeds if it demonstrates a 

problem
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Root cause analysis 

• Tries to track a failure to an error

• Identifying errors is important because it can

– help identify and remove other related defects

– help a programmer (and perhaps a team) avoid 

making the same or a similar error again
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Kinds of testing

• Unit

• White-box

• Black-box

• Gray-box

• Bottom-up

• Top-down

• Boundary condition

• Syntax-driven

• Big bang

• Integration

• Acceptance

• Stress

• Regression

• Alpha

• Beta

• Fuzz

In groups

• The program reads three integer values.  The three 

values are interpreted as representing the lengths of 

the sides of a triangle.  The program prints a 

message that states whether the triangle is isosceles, 

equilateral, or scalene.

• Write a set of test cases that you feel would 

adequately test this program
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In practice

• 13 kinds of errors were found in actual programs

• When highly experienced programmers are given this 

example, on the average they figure out about half of 

the kinds of errors
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The lucky thirteen...

• Valid scalene 

triangle

• Valid equilateral 

triangle

• Valid isosceles 

triangle

• Three cases that 

represent valid 

isosceles triangles 

in all permutations

• One side is zero

• One side is negative

• 3 positive integers 

where two sum to 

the third

• All permutations of 

the previous case
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The remaining ones

• 3 positive integers where two sum to less than the 

third 

• 3 permutations of the previous case

• All sides are zero

• A non-integer side

• An incorrect number of inputs

Questions?
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