
2/13/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

[kwol-i-tee] 1250–1300; ME qualite < OF < L quālitās

[uh-shoor-uhns, -shur-] 1325–75; ME ass(e)ura(u)nce < MF ass(e)urance

dictionary.com

Software quality assurance

• What are we assuring?

• Why are we assuring it?

• How do we assure it?

• How do we know we have assured it?

UW CSE 403 2

What are we assuring?

• Validation: building right system?

• Verification: building system right?

• Presence of good properties?

• Absence of bad properties?

• Identifying errors?

• Confidence in the absence of errors?

• Robust? Safe? Secure? Available? Reliable?

Understandable? Modifiable? Cost-effective? Usable? …

UW CSE 403 3

The answer

matters

Why are we assuring it?

• Business reasons

• Ethical reasons

• Professional reasons

• Personal satisfaction

• Legal reasons

• Social reasons

• Economic reasons

• …

UW CSE 403 4

The answer

matters

How do we assure it?

UW CSE 403 5

Product

PeopleProcess

How do we know we have assured it?

• Depends on ―it‖

• Depends on what we mean by ―assurance‖

• …

UW CSE 403 6

2/13/2009

2

Our focus

• Primarily on the product – testing, verification, etc.

– And primarily on ―built the system right?‖

• Some on the process – walkthroughs, code reviews,

etc.

UW CSE 403 7

Foundation: program correctness

• Relatively few programs are proven correct

– Hard, expensive, and usually uni-dimensional

• The language and ―way of thinking‖ is important, and

many recent testing and anomaly checking

technologies are heavily reliant on this foundation

UW CSE 403 8

UW CSE 403 9

Basics of program correctness

• Make precise the meaning of programs

• In a logic, write down (this is often called the specification)

– the effect of the computation that the program is required to
perform (the postcondition Q)

– any constraints on the input environment to allow this
computation (the precondition P)

• Associate precise (logical) meaning to each construct in the
programming language (this is done per-language, not per-
program)

• Reason (usually backwards) that the logical conditions are
satisfied by the program S

• A Hoare triple is a predicate {P}S{Q} that is true whenever P
holds and the execution of S guarantees that Q holds

UW CSE 403 10

Examples

• {true}

y := x * x;

{y >= 0}

• {x <> 0}

y := x * x;

{y > 0}

• {x > 0}

x := x + 1;

{x > 1}

UW CSE 403 11

More examples

• {x = k}

if (x < 0) x := -x endif;

{ ? }

• { ? }

x := 3;

{ x = 8 }

UW CSE 403 12

Strongest postconditions
[example from Aldrich and perhaps from Leino]

The following are all valid Hoare triples

• {x = 5} x := x * 2 { true }

• {x = 5} x := x * 2 { x > 0 }

• {x = 5} x := x * 2 { x = 10 || x = 5 }

• {x = 5} x := x * 2 { x = 10 }

• Which is the most useful, interesting, valuable?

Why?

2/13/2009

3

UW CSE 403 13

Weakest preconditions
[example from Aldrich and perhaps from Leino]

Here are a number of valid Hoare Triples

• {x = 5 && y = 10} z := x / y { z < 1 }

• {x < y && y > 0} z := x / y { z < 1 }

• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• The last one is the most useful because it allows us to invoke

the program in the most general condition

• It is called the weakest precondition, wp(S,Q) of S with respect

to Q

– If {P} S {Q} and for all P’ such that P’ => P, then P is

wp(S,Q)

UW CSE 403 14

Sequential execution

• What if there are multiple

statements

– {P} S1;S2 {Q}

• We create an intermediate

assertion

– {P} S1 {A} S2 {Q}

• We reason (usually)

backwards to prove the

Hoare triples

• A formalization of this

approach essential defines

the ; operator in most

programming languages

– {x > 0}

y := x*2;

z := y/2

{z > 0}

– {x > 0}

y := x*2;

{y > 0}

z := y/2

{z > 0}

UW CSE 403 15

Conditional execution

• {P}

if C then S1

else S2

endif

{Q}

• Must consider both

branches

• Ex: compute the

maximum of two
variables x and y

{true}

if x >= y then

max := x

else

max := y

fi

{(max >= x max >= y)}

UW CSE 403 16

Hoare logic rule: conditional

{P} if C then S1 else S2 {Q}

{P C}S1{Q} {P C}S2{Q}

UW CSE 403 17

Be careful!

• {true}

max := abs(x)+abs(y);

{max >= x max >= y}

• This predicate holds, but we don’t ―want‖ it to

– The postcondition is written in a way that permits
satisfying programs that don’t compute the
maximum

– In essence, every specification is satisfied by an
infinite number of programs and vice versa

• The ―right‖ postcondition is

– {(max = x max = y)

(max >= x max >= y)}

UW CSE 403 18

Assignment statements

• We’ve been highly informal in dealing with

assignment statements

• What does the statement x := E mean?

– {Q(E)} x := E {Q(x)}

– If we knew something to be true about E before

the assignment, then we know it to be true about x

after the assignment (assuming no side-effects)

2/13/2009

4

UW CSE 403 19

Examples

{y > 0}

x := y

{x > 0}

{x > 0} [Q(E) x + 1 > 1 x > 0]

x := x + 1;

{x > 1} [Q(x) x > 1]

UW CSE 403 20

More examples

{ ? }

x := y + 5

{x > 0}

{x = A y = B }

t := x;

x := y;

y := t

{x = B y = A }

UW CSE 403 21

Loops

• {P} while B do S {Q}

• We can try to unroll this into

– {P B} S {Q}

{P B} S {Q B}

{P B} S {Q B} S {Q B} …

• But we don’t know how far to unroll, since we don’t know how many

times the loop can execute

• The most common approach to this is to find a loop invariant, which is a

predicate that

– is true each time the loop head is reached (on entry and after each

iteration)

– and helps us prove the postcondition of the loop

– It approximates the fixed point of the loop

UW CSE 403 22

Loop invariant for {P} while B do S {Q}

• Find I such that
– P I -Invariant is correct on

entry

– {B I} S {I} –Invariant is maintained

– { B I} Q –Loop termination proves Q

• Example

{n > 0}
x := a[1];
i := 2;
while i <= n do
if a[i] > x then x := a[i];
i := i + 1;

end;
{x = max(a[1],…,a[n])

UW CSE 403 23

Termination

• Proofs with loop invariants do not guarantee that the loop

terminates, only that it does produce the proper postcondition if

it terminates – this is called weak correctness

• A Hoare triple for which termination has been proven is strongly

correct

• Proofs of termination are usually performed separately from

proofs of correctness, and they are usually performed through

well-founded sets

– In this example it’s easy, since i is bounded by n, and i

increases at each iteration

• Historically, the interest has been in proving that a program

does terminate: but many important programs now are intended

not to terminate

UW CSE 403 24

Correctness of data structures

• Primarily due to Hoare;
figures from Wulf et al.

• Prove the specifications on
the abstract operations (e.g.,
Pusha)

• Prove the specifications on
the concrete operations
(e.g., Pushc)

• Prove the relation between
abstract and concrete
operations (e.g., R), the
representation mapping

<x
1
,x

2
> <x,x

1
,x

2
>

Push
a
(S,x)

S.sp = 2

S.v =

[x
2,

x
1
,?,?,...]

S.sp = 3

S.v =

[x
2
,x

1
,x,?,...]

Push
c
(S,x)

R R

Example

{ full(Sa)} { full(R(Sc))}

Pusha(Sa,x) Pushc(Sc,x)

{Sa=<x>||S’a} {R(Sc) = <x>||

R(S’c)}

2/13/2009

5

UW CSE 403 25

So what?

• It lays a foundation for

– Thinking about programs more precisely

– Applying techniques like these in limited, critical

situations

– Development of some modern design,

specification and analysis approaches that seem

to have value in more situations

– Basis for many testing and analysis approaches

UW CSE 403 26

Testing vs. proving

• Dynamic

• Builds confidence

– Can only show the

presence of bugs,

not their absence

• Used widely in

practice

• Costly

• Static

• It’s a proof

– Proofs are human

processes that aren’t

foolproof

• Applicability is

practically limited

• Extremely costly

UW CSE 403 27

Brief (and informal) aside

• Dynamic techniques are unattractive because they

are ―unsound‖ — you can believe something is true

when it’s not

• Static techniques are unattractive because they are

often very costly — and they may lead you to confuse

the checked property for other desirable properties

• The truth is that they should be considered to be

complementary, not competitive

UW CSE 403 28

Testing

• In any case, testing is by far the dominant approach

to assessing software products

UW CSE 403 29

Two kinds of improvements

• One goal is to improve testing to increase the quality

of the software that is produced

• Another goal is to reduce the costs of testing while

maintaining the current quality of the software that is

produced

UW CSE 403 30

Terminology

• A failure occurs when a program doesn't satisfy its

specification

• A fault occurs when a program's internal state is

inconsistent with what is expected (usually an

informal notion)

• A defect is the code that leads to a fault (and perhaps

to a failure)

• An error is the mistake the programmer made in

creating the defect

2/13/2009

6

UW CSE 403 31

More terminology

• A test case is a specific set of data that exercises the

program

• A test suite is a set of test cases

• Old terminology

– A test case (suite) fails if it demonstrates a

problem

• New terminology

– A test case (suite) succeeds if it demonstrates a

problem

UW CSE 403 32

Root cause analysis

• Tries to track a failure to an error

• Identifying errors is important because it can

– help identify and remove other related defects

– help a programmer (and perhaps a team) avoid

making the same or a similar error again

UW CSE 403 33

Kinds of testing

• Unit

• White-box

• Black-box

• Gray-box

• Bottom-up

• Top-down

• Boundary condition

• Syntax-driven

• Big bang

• Integration

• Acceptance

• Stress

• Regression

• Alpha

• Beta

• Fuzz

In groups

• The program reads three integer values. The three

values are interpreted as representing the lengths of

the sides of a triangle. The program prints a

message that states whether the triangle is isosceles,

equilateral, or scalene.

• Write a set of test cases that you feel would

adequately test this program

UW CSE 403 34

UW CSE 403 35

In practice

• 13 kinds of errors were found in actual programs

• When highly experienced programmers are given this

example, on the average they figure out about half of

the kinds of errors

UW CSE 403 36

The lucky thirteen...

• Valid scalene

triangle

• Valid equilateral

triangle

• Valid isosceles

triangle

• Three cases that

represent valid

isosceles triangles

in all permutations

• One side is zero

• One side is negative

• 3 positive integers

where two sum to

the third

• All permutations of

the previous case

2/13/2009

7

UW CSE 403 37

The remaining ones

• 3 positive integers where two sum to less than the

third

• 3 permutations of the previous case

• All sides are zero

• A non-integer side

• An incorrect number of inputs

Questions?

UW CSE 403 38

