
1/9/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

http://flickr.com/photos/nicholaslaughlin/1571649629/

CreativeCommons Attribution-NonCommercial-ShareAlike 2.0

• The Regulators

• The Spark Plugs

• A

• B

• E

• F

• G

• H

Go teams!

Today

• Stages: requirements, design, etc.

• Milestones: deadlines and artifacts representing

progress through particular phases

• The Budget Project: open discussion (~10 minutes)

– Comments, concerns, complaints, ideas, etc.

CSE403 Wi09 2

Classic waterfall

CSE403 Wi09 3

Software

Requirements

Validation

System

Requirements

Validation

Preliminary

Design

Validation

Detailed

Design

Validation

Operations &

Maintenance

Revalidation

Test

Validation test

Code &

Debug

Development test

Requirements

Design

Implementation

Test

Maintenance

These five show

up in some form

in every process

Requirements

• Functional requirements are intended to describe the

functions that the system is to execute – more

broadly, the goals the system is intended to achieve

• Non-functional requirements are intended to

constrain the solution – these might include

constraints on performance, maintainability, reliability,

etc.

• The classic and overly simplistic distinction is that the

requirements represent ―what‖ the system should do

and the design/implementation represent ―how‖ it

should do it

CSE403 Wi09 4

What vs. how

What

• Requirements

• Specification

• Declarative

• Higher-level

• Interface

How

• Design

• Implementation

• Operational

• Lower-level

• Implementation

CSE403 Wi09 5

The machine and the world

Books, Authors,

Titles, etc.

Records,

databases,

pointers, etc.

The World The Machine

UW CSE403 Sp99 Notkin (c) 1999 6

• Michael Jackson suggests a more fundamental distinction

between requirements and program

– The requirements are in the application domain

– The program defines the machine that has an effect in

the application domain

– Ex: Imagine a database system dealing with books

1/9/2009

2

Success

• A system is judged not by properties of the program,

but by the effects of the machine in the world

• You don’t care how Caller ID works, just that it works

• TCAS is a collision-avoidance system for commercial

aircraft

– Pilots love it (on the whole) because it helps them

fly more safely and easily — not because it has

great data structures

UW CSE403 Sp99 Notkin (c) 1999 7 UW CSE403 Sp99 Notkin (c) 1999 8

Failures: havoc in the world

• The Therac-25 killed real people

• The Word 3.0 failures caused real people to lose real

information

• Security holes in Internet browsers allow confidential

information to be stolen

UW CSE403 Sp99 Notkin (c) 1999 9

Two requirements challenges

• To figure out the desired effects (requirements) of the

machine in the world

• To figure out how to write this down in an effective

way

Determining the ―right‖ requirements

• Requirements analysis, requirements discovery,

requirements elicitation, requirements engineering,

etc.

• This is extremely hard: largely, it’s ill-defined and the

customers are usually (legitimately) unsure about

what they really want

• I won’t present a high-level discussion today, but will

cover a specific (but general) technique on Monday

UW CSE403 Sp99 Notkin (c) 1999 10

Writing it down

• It will help clarify what

you think

• It is necessary to

communicate with your

users

• It is necessary to

communicate with your

team members

• It could form the basis

for a contractual

relationship

• Approaches include

– Natural language

– Structured natural

language

– Formal language

UW CSE403 Sp99 Notkin (c) 1999 11

Use cases: a very quick preview

• A use case is a description of an example behavior of

the system as situated in the world

– Jane has a meeting at 10AM; when Jim tries to

schedule another meeting for her at 10AM, he is

notified about the conflict

• Similar to CRC (class responsibility collaborator) and

eXtreme programming ―stories‖

UW CSE403 Sp99 Notkin (c) 1999 12

1/9/2009

3

Design [any noun can be verbed]

• There are many designs that

satisfy a given set of

requirements (functional and

non-functional)

• There are also many designs

that may at first appear to

satisfy the requirements, but

don’t on further study

• Collectively, these form a

design space

• A designer walks this space

evaluating designs

CSE403 Wi09 13

Software design

• Largely a process of finding

decompositions that help

people manage the

complexity

– Understand that the design

satisfies the requirements

– Allow relatively independent

progress of team members

– Support later changes

effectively

• Not all decompositions are

equally good

• A decomposition specifies a

set of components (modules)

and the interactions among

those modules

– At various levels

• Different methods for finding

decompositions

– Structured analysis and design

– Object-oriented design

– Aspect-oriented design

– …

• Different criteria for

assessing designs

– Coupling and cohesion,

complexity, correspondence,

correctness, …
CSE403 Wi09 14

Design representations

• As many (at least)

as there are design

methods

• UML, dataflow, JSD,

ERD, …

CSE403 Wi09 15

http://www.ukoln.ac.uk/qa-focus/documents/case-studies/case-study-03/qa-uml

http://upload.wikimedia.org/wikipedia/commons/thumb/3/31/IDEF_Diagram_Example.jpg/120px-IDEF_Diagram_Example.jpg

Implementation

• There is an ―I‖ in implementation

CSE403 Wi09 16

Testing, verification, validation

• Validation: ―Did we build the right system?‖

– Primarily a requirements-level (upper lifecycle)

issue

• Verification: ―Did we build the system right?‖

– Primarily a lower lifecycle issue (design,

implementation, testing)

CSE403 Wi09 17

Approaches to verifying software

• Testing

– A dynamic approach

• Program verification

– Use math to show an equivalence between a

specification and a program

• Process

– Improving the likelihood that code is correct

– Software inspections, walkthroughs, reviews;

CMMI, ISO 9000, …

UW CSE403 Sp99 Notkin (c) 1999 18

1/9/2009

4

A false dichotomy

Testing Proofs

UW CSE403 Sp99 Notkin (c) 1999 19

Why would we use one approach?

Terminology

• A failure occurs when a program doesn't satisfy its

specification

• A fault occurs when a program's internal state is

inconsistent with what is expected (usually an

informal notion)

• A defect is the code that leads to a fault (and perhaps

to a failure)

• An error is the mistake the programmer made in

creating the defect

UW CSE403 Sp99 Notkin (c) 1999 20

Kinds of testing

• Unit

• White-box

• Black-box

• Gray-box

• Bottom-up

• Top-down

• Boundary condition

• Syntax-driven

• Big bang

• Integration

• Acceptance

• Stress

• Regression

• Alpha

• Beta

• Fuzz

• …

UW CSE403 Sp99 Notkin (c) 1999 21

Maintenance

• Use an existing code base as an asset

– Cheaper and better to get there from here, rather

than starting from scratch

– Anyway, where would you aim for with a new

system?

• The usual joke is that in anything but software, you’d

love to receive a legacy

CSE403 Wi09 22

Why does software change?

• Software changes does not change primarily because it doesn’t

work right

– Maintenance in software is different than maintenance for

automobiles

• But it changes instead because the technological, economic,

and societal environment in which it is embedded changes

• This provides a feedback loop to the software

– The software is usually the most malleable link in the chain,

hence it tends to change

– [Counterexample: Space shuttle astronauts have thousands

of extra responsibilities because it’s safer than changing

code]

1/9/2009 23

Kinds of change

• Corrective maintenance

– Fixing bugs in released code

• Adaptive maintenance

– Porting to new hardware or software platform

• Perfective maintenance

– Providing new functions

• Oft-cited data from Lientz and Swanson (1980)

focused on IT systems – about 17%, 18%, 65%,

respectively

• Modern data? There is some … not too different

1/9/2009 24

1/9/2009

5

Total life cycle cost

• Lientz and Swanson determined that at least 50% of

the total life cycle cost is in maintenance

• There are several other studies that are reasonably

consistent

• General belief is that maintenance accounts for

somewhere between 50-75% of total life cycle costs

1/9/2009 25

Open question

• How much maintenance cost is ―reasonable?‖

– Corrective maintenance costs are ostensibly not

―reasonable‖ (OK, this is easy)

– How much adaptive maintenance cost is

―reasonable‖?

– How much perfective maintenance cost is

―reasonable‖?

• Measuring ―reasonable‖ costs in terms of percentage

of life cycle costs doesn’t make sense

1/9/2009 26

1/9/2009 27

High-level answer

• For perfective maintenance, the objective should be

for the cost of the change in the implementation to be

proportional to the cost of the change in the

specification (design)

– Ex: Allowing dates for the year 2000 is (at most) a

small specification change

– Ex: Adding call forwarding is a more complicated

specification change

– Ex: Converting a compiler into an ATM machine is

…

1/9/2009 28

(Common) Observations

• Maintainers often get less respect than developers

• Maintenance is generally assigned to the least

experienced programmers

• Software structure degrades over time

• Documentation is often poor and is often inconsistent

with the code

• Is there any relationship between these?

Laws of Program Evolution
Lehman & Belady

• Law of continuing change

– ―A large program that is used undergoes

continuing change or becomes progressively less

useful.‖

• Law of increasing complexity

– ―As a large program is continuously changed, its

complexity, which reflects deteriorating structure,

increases unless work is done to maintain or

reduce it.‖

– Cleaning up structure is done relatively

infrequently: even with the recent interest in

refactoring, this seems true. Why?

1/9/2009 29

Milestones

• Artifacts that are intended to explicitly represent

information about a particular stage at specific points

in time in a software lifecycle

• A zillion variants

CSE403 Wi09 30

1/9/2009

6

403: we’ll use two

• SRS: requirements

• SDS: ~design

• Templates on project page

• Examples of both on
http://www.cs.washington.edu/education/courses/403/08sp/projects403.html

CSE403 Wi09 31

Questions?

CSE403 Wi09 32

Budget game: open for discussion

CSE403 Wi09 33

