
Security Audit Checklist: Code Perspective

General tips
 Whitelist over blacklist
 Deny by default
 Least privilege principle
 Limit resource consumption (DoS)
 Judicious use of shell calls, eval functions

Admin strategies
 Examine log files for unexpected activities
 Examine database for strange entries
 Check for odd user accounts, groups
 Check for incorrect user rights, group memberships
 Use correct config files (apache, php, mysql) settings

Don't trust input data
 Form input, POST/GET
 Command line arguments
 Configuration files
 Environment variables
 Cookies
 Input files

Validate all input data
 Server and client

o Before saving input
o Before using input

 Escape printed/executed user input data
o Validate input printed in error messages

 Deny by default if unsure
 Use regexes to validate
 Careful with user-provided file names

Error messages
 Catch exceptions
 Check result codes
 Don't display "too" helpful errors:

o Variables in scope
o Failing SQL query
o Stack trace

 Print error details to log instead of in app (filter
passwords, sensitive data)

Sensitive data
 Use encrypted external files to store passwords to DB

connections, other passwords (not hardcoded)
 Check credentials upon each load of restricted page
 Store config files outside of web-accessible directory

(.htaccess "deny from all")
 Not stored in cookies, sessions
 Not logged in log files

Sessions
 Stealing a session id: using web app as someone else
 Store sensitive session information in database keyed by

session ID instead of in session variable
 Make log-out button prominent
 Expire sessions unused past ~20 min
 Expire sessions on server and client

Files
 Use absolute paths
 Set file permissions, directory permissions

o For already-existing files
o For files created by application

 Throw errors when overwriting already existing files
 Check file is not a symbolic link before opening
 Unique/difficult to guess file names for temporary files

(symbolic link attack)
 Open files with lowest level of permission needed

Ruby on Rails
 Use escapeHTML() / h() to escape input in HTML

 Use escape_javascript() for input within JS
functions

 Use sanitize_sql() for connection,execute(),
Model.find_by_sql()

 Pass array or hash in conditions fragments
(:conditions => ["login = ? AND password =
?", name, pass])

 Use built-in active record validations
 Use private and protected in controllers for methods that

should not be actions
 Mass assignment: use attr_accessible to specify

attributes accessible for mass-assignment
 Use filter_parameter_logging on sensitive

attributes so Rails logs do not store them
 Use before_filter :only => [...] instead of
:except => [..]

Java/JSP
 Use PreparedStatements to update databases
 Don't try to do HTML-encoding yourself; use library:

o lang package in Apache Commons Project
(http://commons.apache.org/lang/)

o StringEscapeUtils: escapeXML, escapeHTML
 Perform logging from a .jsp page using the global
log() function

 Use a SecurityManager when running untrusted code
 Limit publicly accessible static/global shared data
 Use encryption algorithms found in javax.crypto.*

instead of writing own/using others'

PHP
 Use htmlspecialchars() to escape input in HTML

 Use mysql_real_escape_string /
pg_escape_string for SQL statements

 Use is_numeric(), ctype_digit(), regexes,
variable handling functions for validation

 Deploy with register_globals, display_errors
off; log_errors on

 Commonly disabled functions: ini_set(), exec(),
fopen(), popen(), passthru(), readfile(),
file(), shell_exec() and system()

 Tools: Spike PHP Security Audit Tool, PHP Security
Scanner PhpSecInfo

Security Audit Checklist: Attacker Perspective

General
 View source
 Trigger error messages

o May contain useful information, filenames, etc

URL discovery
 Directory traversal
 Increment/decrement numeric ids
 Guess filenames
 Try connecting to different ports (SSH, FTP, mail, etc)
 Modify query parameters
 Google hacking

Bypass client-side validation
 Disable/modify validating javascript
 Modify pre-set form values

o Hidden
o Radio
o Select

 Modify cookies

Injection
 HTML

o User-provided data is output unescaped
o Could be used for XSS

 SQL in username/password fields
o ; DROP TABLE foo --
o ' OR 1=1 --

 SQL In URLs
o http://abc.com/index.php?id=10 AND id=11

 JavaScript/Ajax requests
 Anything that should be escaped but isn't

Login
 Repeatedly submit login form; is there a lock-out?
 Try various user names for "wrong password" feedback (gives details into login/password scheme)
 See if log in locks out after N failed attempts; if there is a delay, captcha
 Weak "forgot password" setup?
 Check cookies when logged in; see if storing vital information
 Login done over a secure channel? (man-in-the-middle)

Other
 DoS: look for slow/computationally intensive things to request multiple times in succession
 Check for weak or breakable forms of encryption
 Check for unsigned security certificates

Useful Tools
 Firebug
 Life HTTP Headers Firefox extension

o Useful for capturing, modifying, and re-playing AJAX requests

