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Lecture outline 

• Why is teamwork hard? 

 

• Not getting into each other’s way 

 

• Positive teamwork 



Team pros and cons 

• Benefits 

– Attack bigger problems in a short period of time 

– Utilize the collective experience of everyone 

 

• Risks 

– Communication and coordination issues 

– Groupthink:  diffusion of responsibility; going along  

– Working by inertia; not planning ahead 

– Conflict or mistrust between team members 



Communication: powerful but costly! 

• Communication requirements increase with 
increasing numbers of people 

• Everybody to everybody: quadratic cost 

• Every attempt to communicate is a chance to 
miscommunicate 

• But not communicating will guarantee 
miscommunication 



What about conflicts? 

• Two people want to work on the same file 

– Google docs lets you do that 

But…  

• What about same line? 

• What about timing? 

• What about design decisions? 

What can cause conflicts? 



Version control 

Version control aims to allow 
multiple people to work in 

parallel.  



Centralized version control 

• (old model) 

• Examples: Concurrent Versions System (CVS) 
     Subversion (SVN) 
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Doing work 

• I update my checkout (working copy) 

• I edit 

• I update my checkout again 

• I merge changes if necessary 

• I commit my changes to the Master 
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Problems with centralized VC 

• What if I don’t have a network connection? 

 

• What if I am implementing a big change? 

 

• What if I want to explore project history later? 



Distributed version control 

• (new model) 

• Examples: Mercurial (Hg), Git, Bazaar, Darcs, … 

 

• Local operations are fast (and possible) 

• History is more accurate 

• Merging algorithms are far better 



Distributed version control model 
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Doing work 

 

• I pull from the Master 

• I update my checkout 

• I edit 

• I commit 

• I pull from the Master 

• I merge tips if necessary and commit again 

• I push my changes to the Master 
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History view (log) 

• Bill and Melinda work at the 
same time 

 

• At the end, all repositories have 
the same, rich history 



What VC does the cloud provide? 

• code.google.com  has SVN and Hg 

• bitbucket.org has Hg 

• github.com has git 

• sourceforge.net  has SVN, CVS, git, Hg, Bazaar 

 

• You can run whatever you want of UW servers 

 

http://code.google.com/
https://bitbucket.org/
https://github.com/
http://sourceforge.net/


Predicting conflicts 

Even with version 
control, there are 
still costly conflicts 



Crystal conflict predictor 

Crystal is a research tool that predicts conflicts 



What to do to use Crystal 

• You must use Hg 

 

• Crystal is under development 

 

• I <3 feedback 

 

• There will be a survey 



Lecture outline 

• Why is teamwork hard? 

 

• Not getting into each other’s way 

 

Positive teamwork 



Common SW team responsibilities 

• Project management 

• Functional management  

• Developers: programmers, testers, integrators 

• Lead developer/architect (“tech lead”) 
 

• These could be all different team members, or 
some members could span multiple roles. 

• Key: Identify and stress roles and responsibilities 



Issues affecting team success 

• Presence of a shared mission and goals 
 

• Motivation and commitment of team members 
 

• Experience level 
– and presence of experienced members 

 
• Team size 

– and the need for bounded yet sufficient communication 
 

• Team organization 
– and results-driven structure 

 
• Reward structure within the team 

– incentives, enjoyment, empowerment (ownership, autonomy) 



• Dominion model 
– Pros 

• clear chain of responsibility 
• people are used to it 

– Cons: 
• single point of failure at the commander 
• less or no sense of ownership by everyone 

 

• Communion model 
– Pros 

• a community of leaders, each in his/her own domain 
• inherent sense of ownership 

– Cons 
• people aren't used to it (and this scares them) 

Team structure models 



Team leadership 

• Who makes the important product-wide 
decisions in your team? 

– One person? 

– All, by unanimous consent? 

– Other options?... 

 

– Is this an unspoken or an explicit agreement 
among team members? 



Surgical/Chief Programmer Team 
[Baker, Mills, Brooks] 

Chief: all key decisions 

Copilot: chief’s assistant 

Administrator: manages people, hardware, resources 

Editor: edits chief’s documentation 

Secretaries (2): for administrator and for editor 

Program clerk: keeps all project records 

Toolsmith: builds programming tools for chief 

Tester: develops and runs unit and system tests 

Language lawyer: programming language expert, advises chief 



Microsoft’s team structure 
[microsoft.com] 

• Program Manager.  Leads the technical side of a 
product development team, managing and 
defining the functional specifications and defining 
how the product will work.  

• Software Design Engineer.  Codes and designs 
new software, often collaborating as a member 
of a software development team to create and 
build products.  

• Software Test Engineer.  Tests and critiques 
software to assure quality and identify potential 
improvement opportunities and projects. 



Toshiba Software Factory [Y. Matsumoto] 

• Late 1970’s structure for 2,300 software 
developers producing real-time industrial 
application software systems (such as traffic 
control, factory automation, etc.) 

• Unit Workload Order Sheets (UWOS) precisely 
define a software component to be built 

• Assigned by project management to developers 
based on scope/size/skills needed 

• Completed UWOS fed back into management 
system 

• Highly measured to allow for process improvement 



Common factors in good teams 

• Clear roles and responsibilities 
– Each person knows and is accountable for their work 

 

• Monitor individual performance 
– Who is doing what, are we getting the work done? 

 

• Effective communication system 
– Available, credible, tracking of issues, decisions 
– Problems aren't allowed to fester ("boiled frogs") 

 

• Fact based decisions 
– Focus on the facts, not the politics, personalities, … 



• What motivates you? 
– Achievement 

– Recognition 

– Advancement 

– Salary 

– Possibility for growth 

– Interpersonal relationships 
• Subordinate 

• Superior 

• Peer 

– Status 

– Technical supervision 
opportunities 

Motivation 
 

 Company policies 

 Work itself 

 Work conditions 

 Personal life 

 Job security 

 Responsibility 

 Competition 

 Time pressure 

 Tangible goals 

 Social responsibility 

 Other? 



De-motivators 

• What takes away your motivation? 
– Micro-management or no management 
– Lack of ownership 
– Lack of effective reward structure 

• Including lack of simple appreciation for job well done 

– Excessive pressure and resulting "burnout" 
– Allowing "broken windows" to persist 
– Lack of focus in the overall direction 
– Productivity barriers 

• Asking too much; not allowing sufficient learning time; using the wrong tools 

– Too little challenge 
– Work not aligned with personal interests and goals 
– Poor communication inside the team 


