
Structural Design Patterns

February 2 2011
CSE 403, Winter 2011, Brun

Amazon web services

• Applied for grant

• No guarantees yet

• Might provide some cash for each student.

Picture diagram question

We mean an architectural diagram, like
the ones from the architecture lecture

(January 19)

System Design and Planning Presentations

• Presentations due by class on Friday, Feb 4

• Turnin online (class web page) and also bring to class on

memory stick

• Present – 10 min followed by Q&A:

– What is it that you’re building (remind us!)

– What’s your approach to building it and what

challenges might you meet

– How you will achieve your goals with the time

and resources allocated

Convince us that you’re on track

for a successful delivery!

Structural patterns: Wrappers

• Problem: incompatible interfaces

• Solution: a thin veneer over an encapsulated class

– modify the interface

– extend behavior

– restrict access

• The encapsulated class does most of the work

Types of wrappers

Pattern Functionality Interface

Adapter same different

Decorator different same

Proxy same same

Adapter

• Change an interface without changing
functionality

– rename a method

– convert units

– implement a method in terms of another

• Example: angles passed in radians vs. degrees

Adapter example: scaling rectangles

interface Rectangle {

 // grow or shrink this by the given factor

 void scale(float factor);

 ...

 float getWidth();

 float area();

}

class quadrupler {

 void quadruple(Rectangle r) {

 ... r.scale(4); ...

 }

}

Adapting scaled rectangles via subclassing

class ScaleableRectangle1

 extends NonScaleableRectangle implements Rectangle {

 void scale(float factor) {

 setWidth(factor * getWidth());

 setHeight(factor * getHeight());

 }

}

Could we use this class instead?

class NonScaleableRectangle {

 void setWidth(float width) { ... }

 void setHeight(float height) { ... }

 ...

}

Adapting scaled rectangles via delegation

Delegation: forward requests to another object

class ScaleableRectangle2 implements Rectangle {

 NonScaleableRectangle r;

 ScaleableRectangle2(NonScaleableRectangle r) {

 this.r = r;

 }

 void scale(float factor) {

 setWidth(factor * getWidth());

 setHeight(factor * getHeight());

 }

 float getWidth() { return r.getWidth(); }

 float circumference() { return r.circumference(); }

 ...

}

Decorator

• Add functionality without changing the interface

• Add to existing methods to do something
additional
(while still preserving the previous specification)

• Not all subclassing is decoration

Decorator example: Bordered windows

– interface Window {

– // rectangle bounding the window

– Rectangle bounds();

– // draw this on the specified screen

– void draw(Screen s);

– ...

– }

– class WindowImpl implements Window {

– ...

– }

Bordered windows: two ways

• Via subclassing:
– class BorderedWindow1 extends WindowImpl {

– void draw(Screen s) {

– super.draw(s);

– bounds().draw(s);

– }

– }

• Via delegation:
– class BorderedWindow2 implements Window {

– Window innerWindow;

– BorderedWindow2(Window innerWindow) {

– this.innerWindow = innerWindow;

– }

– void draw(Screen s) {

– innerWindow.draw(s);

– innerWindow.bounds().draw(s);

– }

– }

Delegation permits multiple

borders on a window and a

window that is both bordered and

shaded (or either one of those)

Proxy

• Same interface and functionality as the wrapped class

• Control access to other objects

– communication: manage network details when using a
remote object

– locking: serialize access by multiple clients

– security: permit access only if proper credentials

– creation: object might not yet exist (creation is expensive)

• hide latency when creating object

• avoid work if object is never used

Subclassing vs. delegation

• Subclassing
– automatically gives access to all methods of superclass
– built into the language (syntax, efficiency)

• Delegation
– permits cleaner removal of methods (compile-time

checking)
– wrappers can be added and removed dynamically
– objects of arbitrary concrete classes can be wrapped
– multiple wrappers can be composed

• Some wrappers have qualities of more than one of
adapter, decorator, and proxy

Composite pattern

• Composite permits a client to manipulate
either an atomic unit or a collection of units in
the same way

• Good for dealing with part-whole
relationships

Composite example: Bicycle

• Bicycle
– Wheel

• Skewer
• Hub
• Spokes
• Nipples
• Rim
• Tube
• Tire

– Frame
– Drivetrain

• ...

– ...

Methods on components
class BicycleComponent {

 int weight();

 float cost();

}

class Skewer extends BicycleComponent {

 float price;

 float cost() { return price; }

}

class Wheel extends BicycleComponent {

 float assemblyCost;

 Skewer skewer;

 Hub hub;

 ...

 float cost() {

 return assemblyCost

 + skewer.cost()

 + hub.cost()

 + ...;

 }

}

Composite example: Libraries

• Library
– Section (for a given genre)
– Shelf
– Volume
– Page
– Column
– Word
– Letter
interface Text {

 String getText();

}

class Page implements Text {

 String getText() {

 ... return the concatenation of the column texts ...

 }

}

Traversing composites

Goal: perform operations
on all parts of a composite

Abstract syntax tree (AST) for Java code
class PlusOp extends Expression { // + operation

 Expression leftExp;

 Expression rightExp;

}

class VarRef extends Expression { // variable reference

 String varname;

}

class EqualOp extends Expression { // equality test a==b;

 Expression lvalue; // left-hand side; "a" in "a==b"

 Expression rvalue; // right-hand side; "b" in "a==b"

}

class CondExpr extends Expression { // a?b:c

 Expression condition;

 Expression thenExpr; // value of expression if a is true

 Expression elseExpr; // value of expression if a is false

}

Object model vs. class hierarchy
diagram

• AST for "a + b":

• Class hierarchy for Expression:

(PlusOp)

a
(VarRef)

b
(VarRef)

Expression

PlusOp VarRef EqualOp CondExpr

Perform operations on ASTs
• Need to write code in each of the cells of this

table:

• Question: Should we group together the code for
a particular operation or the code for a particular
expression?

 Objects

CondExpr EqualOp

Operations
typecheck

pretty-print

Interpreter and procedural patterns

• Interpreter: collects code for similar objects and
spreads apart code for similar operations
– easy to add objects, hard to add operations

• Procedural: collects code for similar operations and
spreads apart code for similar objects
– easy to add operations, hard to add objects
– example: visitor pattern

• Interpreter and procedural have classes for objects
– the code for operations is similar;

the question is where to place that code

• Selecting between interpreter and procedural:
– Are the algorithms central? Are the objects?

(Is the system operation-centric or object-centric?)
– What aspects of the system are most likely to change?

Interpreter pattern

• Add a method to each class for each supported operation
– class Expression {

– ...

– Type typecheck();

– String prettyPrint();

– }

– class EqualOp extends Expression {

– ...

– Type typecheck() { ... }

– String prettyPrint() { ... }

– }

– class CondExpr extends Expression {

– ...

– Type typecheck() { ... }

– String prettyPrint() { ... }

– }

Procedural pattern

Create a class per operation, with a method per operand type
class Typecheck {

 // typecheck "a?b:c"

 Type tcCondExpr(CondExpr e) {

 Type condType = tcExpression(e.condition); // type of "a"

 Type thenType = tcExpression(e.thenExpr); // type of "b"

 Type elseType = tcExpression(e.elseExpr); // type of "c"

 if ((condType == BoolType) && (thenType == elseType)) {

 return thenType;

 } else {

 return ErrorType; }

 }

 // typecheck "a==b"

 Type tcEqualOp(EqualOp e) {

 ...

 }

}

Definition of tcExpression
(in procedural pattern)

– class Typecheck {

– ...

– Type tcExpression(Expression e) {

– if (e instanceof PlusOp) {

– return tcPlusOp((PlusOp)e);

– } else if (e instanceof VarRef) {

– return tcVarRef((VarRef)e);

– } else if (e instanceof EqualOp) {

– return tcEqualOp((EqualOp)e);

– } else if (e instanceof CondExpr) {

– return tcCondExpr((CondExpr)e);

– } else ...

– ...

– }

– }

Maintaining this code is tedious and error-prone.

The cascaded if tests are likely to run slowly.

This code must be repeated in PrettyPrint and

every other operation class.

Visitor pattern:
a variant of the procedural pattern

• Visitor encodes a traversal of a hierarchical data structure
• Nodes (objects in the hierarchy) accept visitors
• Visitors visit nodes (objects)

class Node {

 void accept(Visitor v) {

 for each child of this node {

 child.accept(v);

 }

 v.visit(this);

 }

}

class Visitor {

 void visit(Node n) {

 perform work on n

 }

}

n.accept(v) performs a depth-first

traversal of the structure rooted at n,

performing v's operation on each

element of the structure

Sequence of calls to accept and visit

– a.accept(v)
– b.accept(v)
– d.accept(v)
– v.visit(d)
– e.accept(v)
– v.visit(e)
– v.visit(b)
– c.accept(v)
– f.accept(v)
– v.visit(f)
– v.visit(c)
– v.visit(a)

• Sequence of calls to visit: d, e, b, f, c, a

a

ed

cb

f

Implementing visitor

• You must add definitions of visit and accept

• Visit might count nodes, perform typechecking, etc.

• It is easy to add operations (visitors), hard to add
nodes (modify each existing visitor)

• Visitors are similar to iterators:
each element of the data structure is presented in
turn to the visit method

– Visitors have knowledge of the structure, not just the
sequence

Calls to visit cannot communicate
with one another

• One solution: an auxiliary data structure

• Another solution: move more work into the visitor itself
class Node {

 void accept(Visitor v) {

 v.visit(this); }

}

class Visitor {

 void visit(Node n) {

 for each child of this node {

 child.accept(v); }

 perform work on n

 }

}

• Information flow is clearer (if visitor depends on children)

• Traversal code repeated in all visitors

